5,412 research outputs found

    Dynamics of an experimental two bladed horizontal axis wind turbine with blade cyclic pitch variation

    Get PDF
    The turbine under study incorporates the combination of two features: the application of blade cyclic pitch variation; and the use of yaw angle control for rotor speed and torque regulation. Due to its emasculation by passive cyclic pitch variation the rotor can be rapidly yawed without encountering gyroscopic and aerodynamic hub moments and without noticeable out of plane excursions. The two bladed upwind rotor is vane stabilized and of very simple and rugged design. The principle was first checked out with a small scale wind tunnel model and then tested in the atmosphere with a 7.6 meter diameter experimental fully instrumented wind turbine driving a 3 phase alternator. The test results are summarized with respect to structural dynamics and yaw dynamics

    Melanism as a potential thermal benefit in eastern fox squirrels (Sciurus niger)

    Get PDF
    Melanistic fox squirrels (Sciurus niger) have expanded westward and increased in frequency in the Omaha, Nebraska, and Council Bluffs, Iowa, metropolitan areas. The selective advantage of melanism is currently unknown, but thermal advantages have been hypothesized, especially in winter. No difference in metabolic response curves were measured between melanistic (black) and rufus (orange) fox squirrels. When exposed to sunny skies, both melanistic and rufus squirrels had higher surface (skin and fur) temperature as ambient temperatures increased. Melanistic squirrel surface temperatures did not differ when squirrels were exposed to sunny or cloudy skies. However, rufus individuals showed significantly lower increases in surface temperatures when under cloudy skies. During fall months, rufus individuals were about 1.5 times more active throughout the day than melanistic individuals. However, in winter, melanistic fox squirrels were approximately 30% more active in the mornings (before 13:00) compared to rufus squirrels. Pre-winter body condition was higher in melanistic (25.5 ± 1.8 g/cm) compared to rufus (20.30 ± 3.6 g/cm) fox squirrels; however, there were no significant differences between melanistic (22.8 ± 1.4 g/cm) and rufus (23.9 ± 0.8 g/cm) fox squirrel post-winter body condition. The results of this study indicate that melanistic fox squirrels may have a slight winter thermal advantage over rufus fox squirrels by maintaining higher skin temperatures

    Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition in binary polymer blends

    Full text link
    Within self-consistent field theory we study the phase behaviour of a symmetric binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to the interface localisation/delocalisation transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. The crossover between these qualitatively different limiting behaviours occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field.Comment: to appear in Europhys.Let

    Scaling of the Random-Field Ising Model at Zero Temperature

    Full text link
    The exact determination of ground states of small systems is used in a scaling study of the random-field Ising model. While three variants of the model are found to be in the same universality class in 3 dimensions, the Gaussian and bimodal models behave distinctly in 4 dimensions with the latter apparently having a discontinuous jump in the magnetization. A finite-size scaling analysis is presented for this transition.Comment: 14 pages Latex, 4 figure

    Renormalization Group Method and Reductive Perturbation Method

    Full text link
    It is shown that the renormalization group method does not necessarily eliminate all secular terms in perturbation series to partial differential equations and a functional subspace of renormalizable secular solutions corresponds to a choice of scales of independent variables in the reductive perturbation method.Comment: 5 pages, late

    Derivation of Amplitude Equations by Renormalization Group Method

    Full text link
    A proper formulation in the perturbative renormalization group method is presented to deduce amplitude equations. The formulation makes it possible not only avoiding a serious difficulty in the previous reduction to amplitude equations by eliminating all of the secular terms but also consistent derivation of higher-order correction to amplitude equations.Comment: 6 page, revte

    M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems

    Get PDF
    We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way of discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ~5% occurrence rate of rapid rotation among the ~3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The Astrophysical Journa

    Shock and Release Temperatures in Molybdenum

    Full text link
    Shock and release temperatures in Mo were calculated, taking account of heating from plastic flow predicted using the Steinberg-Guinan model. Plastic flow was calculated self-consistently with the shock jump conditions: this is necessary for a rigorous estimate of the locus of shock states accessible. The temperatures obtained were significantly higher than predicted assuming ideal hydrodynamic loading. The temperatures were compared with surface emission spectrometry measurements for Mo shocked to around 60GPa and then released into vacuum or into a LiF window. Shock loading was induced by the impact of a planar projectile, accelerated by high explosive or in a gas gun. Surface velocimetry showed an elastic wave at the start of release from the shocked state; the amplitude of the elastic wave matched the prediction to around 10%, indicating that the predicted flow stress in the shocked state was reasonable. The measured temperatures were consistent with the simulations, indicating that the fraction of plastic work converted to heat was in the range 70-100% for these loading conditions

    Validation of the Polish version of P-QoL questionnaire

    No full text
    Objective: Pelvic organ prolapse (POP) is a common morbidity that affects many women and significantly decreases quality of life. The severity and the impact of the prolapse on the quality of life are important parameters in the management and follow-up of affected patients. The aim of this validation study was to validate the Polish version of the Prolapse Quality of Life questionnaire (P-QoL). Material and methods: The P-QOL questionnaire was translated into Polish and administered to women recruited from two gynecological outpatient clinics (n = 231). Both symptomatic and asymptomatic women were included in the study and examined in supine position using the Pelvic Organ Prolapse Quantification System (POP-Q). The validity was assessed by comparing symptom scores and quality-of-life scores between symptomatic and asymptomatic women. Results: A total number of 154 symptomatic and 77 asymptomatic women were included. There was a strong correlation between severity of the disease based on physical findings (POP-Q scale) and the P-QoL scores in main prolapse quality-of-life domains. The overall scores for each life domain were significantly different between symptomatic and asymptomatic women (p < 0.001). All the questions regarding symptoms showed significant differences (p < 0.001) between both groups. Conclusions: The Polish version of P-QoL is a valid, reliable, and easily comprehensible instrument to assess quality of life and symptoms in Polish-speaking women suffering from urogenital prolapse
    corecore