5,567 research outputs found

    Designing dual-plate meteoroid shields: A new analysis

    Get PDF
    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts

    The SUMMIT trial: a field comparison of buprenorphine versus methadone maintenance treatment.

    Get PDF
    This prospective patient-preference study examined the effectiveness in practice of methadone versus buprenorphine maintenance treatment and the beliefs of subjects regarding these drugs. A total of 361 opiate-dependent individuals (89% of those eligible, presenting for treatment over 2 years at a drug service in England) received rapid titration then flexible dosing with methadone or buprenorphine; 227 patients chose methadone (63%) and 134 buprenorphine (37%). Participants choosing methadone had more severe substance abuse and psychiatric and physical problems but were more likely to remain in treatment. Survival analysis indicated those prescribed methadone were over twice as likely to be retained (hazard ratio for retention was 2.08 and 95% confidence interval [CI] = 1.49-2.94 for methadone vs. buprenorphine), However, those retained on buprenorphine were more likely to suppress illicit opiate use (odds ratio = 2.136, 95% CI = 1.509-3.027, p < .001) and achieve detoxification. Buprenorphine may also recruit more individuals to treatment because 28% of those choosing buprenorphine (10% of the total sample) stated they would not have accessed treatment with methadone

    Renormalization Group Method and Reductive Perturbation Method

    Full text link
    It is shown that the renormalization group method does not necessarily eliminate all secular terms in perturbation series to partial differential equations and a functional subspace of renormalizable secular solutions corresponds to a choice of scales of independent variables in the reductive perturbation method.Comment: 5 pages, late

    Scaling of the Random-Field Ising Model at Zero Temperature

    Full text link
    The exact determination of ground states of small systems is used in a scaling study of the random-field Ising model. While three variants of the model are found to be in the same universality class in 3 dimensions, the Gaussian and bimodal models behave distinctly in 4 dimensions with the latter apparently having a discontinuous jump in the magnetization. A finite-size scaling analysis is presented for this transition.Comment: 14 pages Latex, 4 figure

    Lattice Boltzmann simulations of lamellar and droplet phases

    Full text link
    Lattice Boltzmann simulations are used to investigate spinodal decomposition in a two-dimensional binary fluid with equilibrium lamellar and droplet phases. We emphasise the importance of hydrodynamic flow to the phase separation kinetics. For mixtures slightly asymmetric in composition the fluid phase separates into bulk and lamellar phases with the lamellae forming distinctive spiral structures to minimise their elastic energy.Comment: 19 pages, 5 figure

    Destruction of first-order phase transition in a random-field Ising model

    Full text link
    The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double-Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width σ\sigma. Is is argued that this distribution is more appropriate for a theoretical description of real systems than its simpler particular cases, i.e., the bimodal (σ=0\sigma=0) and the single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destructed for increasing values of σ\sigma, similarly to what happens in the compound FexMg1xCl2Fe_{x}Mg_{1-x}Cl_{2}, whose finite-temperature first-order phase transition is presumably destructed by an increase in the field randomness.Comment: 13 pages, 3 figure

    Inelastic collapse of a randomly forced particle

    Full text link
    We consider a randomly forced particle moving in a finite region, which rebounds inelastically with coefficient of restitution r on collision with the boundaries. We show that there is a transition at a critical value of r, r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath which the particle undergoes inelastic collapse, coming to rest after an infinite number of collisions in a finite time. The value of r_c is argued to be independent of the size of the region or the presence of a viscous damping term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st

    Random-field Ising model on complete graphs and trees

    Full text link
    We present exact results for the critical behavior of the RFIM on complete graphs and trees, both at equilibrium and away from equilibrium, i.e., models for hysteresis and Barkhausen noise. We show that for stretched exponential and power law distributions of random fields the behavior on complete graphs is non-universal, while the behavior on Cayley trees is universal even in the limit of large co-ordination.Comment: 4 pages, 4 figure
    corecore