468 research outputs found

    A Lattice Boltzmann Model of Binary Fluid Mixture

    Full text link
    We introduce a lattice Boltzmann for simulating an immiscible binary fluid mixture. Our collision rules are derived from a macroscopic thermodynamic description of the fluid in a way motivated by the Cahn-Hilliard approach to non-equilibrium dynamics. This ensures that a thermodynamically consistent state is reached in equilibrium. The non-equilibrium dynamics is investigated numerically and found to agree with simple analytic predictions in both the one-phase and the two-phase region of the phase diagram.Comment: 12 pages + 4 eps figure

    Inelastic collapse of a randomly forced particle

    Full text link
    We consider a randomly forced particle moving in a finite region, which rebounds inelastically with coefficient of restitution r on collision with the boundaries. We show that there is a transition at a critical value of r, r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath which the particle undergoes inelastic collapse, coming to rest after an infinite number of collisions in a finite time. The value of r_c is argued to be independent of the size of the region or the presence of a viscous damping term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st

    Bioluminescence of Colonial Radiolaria in the Western Sargasso Sea

    Get PDF
    Colonial radiolaria (Protozoa: Spumellarida) were a conspicuous feature in surface waters of the Sargasso Sea during the April (1985) Biowatt cruise. The abundance of colonies at the sea surface at one station was estimated to be 23 colonies · m−2. Bioluminescence by colonial radiolaria, representing at least six taxa, was readily evoked by mechanical stimuli and measured by fast spectroscopy and photon-counting techniques. Light emission was deep blue in color (peak emissions between 443 and 456 nm) and spectral distributions were broad (average half bandwidth of 80 nm). Single flashes were 1–2 s in duration at ≈23 °C, with species-dependent kinetics which were not attributed to differences in colony morphology, since colonies similar in appearance could belong to different species (even families) and display different flash kinetics. Although the presence of dinoflagellate symbionts was confirmed by the presence of dinoflagellate marker pigments in the colonies, luminescence in the radiolaria examined most likely did not originate from symbiotic dinoflagellates because of (1) differences in the emission spectra, (2) unresponsiveness to low pH stimulation, (3) differences in flash kinetics and photon emission of light emission, and (4) lack of light inhibition. The quantal content of single flashes averaged 1 × 109 photons flash−1, and colonies were capable of prolonged light emission. The mean value of bioluminescence potential based on measurements of total mechanically stimulated bioluminescence was 1.2 × 1011 photons · colony−1. It is estimated that colonial radiolaria are capable of producing ≈2.8 × 1012 photons · m−2 of sea surface. However, this represented only 0.5% of in situ measured bioluminescence potential

    Spontaneous orbiting of two spheres levitated in a vibrated liquid

    Get PDF
    In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations repro- duce the observed behaviour qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability

    Fluid dynamics and cell-bound Psl polysaccharide allows microplastic capture, aggregation and subsequent sedimentation by Pseudomonas aeruginosa in water.

    Get PDF
    Funder: 2019 University of Nottingham Interdisciplinary Centre for Analytical Science (UNICAS)Decades after incorporating plastics into consumer markets, research shows that these polymers have spread worldwide. Fragmentation of large debris leads to smaller particles, collectively called microplastics (MPs), which have become ubiquitous in aquatic environments. A fundamental aspect of understanding the implications of MP contamination on ecosystems is resolving the complex interactions of these artificial substrates with microbial cells. Using polystyrene microparticles as model polymers, we conducted an exploratory study where these interactions are quantitatively analyzed using an in vitro system consisting of single-bacterial species capturing and aggregating MPs in water. Here we show that the production of Psl exopolysaccharide by Pseudomonas aeruginosa (PA) does not alter MPs colloidal stability but plays a key role in microspheres adhesion to the cell surface. Further aggregation of MPs by PA cells depends on bacterial mobility and the presence of sufficient flow to prevent rapid sedimentation of early MP-PA assembles. Surprisingly, cells in MP-PA aggregates are not in a sessile state despite the production of Psl, enhancing the motility of the aggregates by an order of magnitude relative to passive diffusion. The generated data could inform the creation of predictive models that accurately describe the dynamics and influence of bacterial growth on plastics debris

    Reduced thermodynamic description of phase separation in a quasi-one-dimensional granular gas

    Get PDF
    We describe simulations of a quasi-one-dimensional, vibrated granular gas which exhibits an apparent phase separation into a liquidlike phase and a gaslike phase. In thermal equilibrium, such a phase separation in one dimension is prohibited by entropic considerations. We propose that the granular gas minimizes a function of the conserved mechanical variables alone: the particle number and volume. Simulations in small cells can be used to extract the equation of state and predict the coexisting pressure and densities, as confirmation of the minimization principle. Fluctuations in the system manifest themselves as persistent density waves but they do not destroy the phase-separated state
    • …
    corecore