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Spontaneous orbiting of two spheres levitated in a vibrated liquid

H. A. Pacheco-Martinez, L. Liao, R. J. A. Hill, Michael R. Swift and R. M. Bowley
School of Physics and Astronomy,

University of Nottingham,

Nottingham, NG7 2RD, U.K.

In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference
in density between the solid and the liquid. If such a suspension is subjected to vibration there is
relative motion between the particles and the fluid which can lead to self-organization and pattern
formation. Here we describe experiments carried out to investigate the behavior of two identical
spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration the
spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to
spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates
that the instability occurs at a critical value of the streaming Reynolds number. Simulations repro-
duce the observed behaviour qualitatively and quantitatively, and are used to identify the features
of the flow that are responsible for this instability.

PACS numbers: 47.32.-y, 47.57.E-, 85.70.Rp, 47.20.Ky

In the absence of gravity any collection of particles can
form a suspension in a liquid, regardless of their density.
If the densities are different and the suspension is vi-
brated, the particles and the fluid will move relative to
each other. The resulting hydrodynamic flows in the liq-
uid can strongly influence the behavior of the suspended
particles. Here we show how diamagnetic levitation can
be used to study such a suspension, reproducing the ef-
fect of weightless conditions in an orbiting spacecraft. We
study the behavior of two spheres suspended in a liquid
that is vibrated to induce hydrodynamic flows around
the spheres.

Hydrodynamic interactions between particles are a
known mechanism for inducing dynamic self-assembly
[1]. Ordinarily, such experiments are limited to two-
dimensional ordering due to the presence of gravity, ei-
ther with the particles on a surface [2–6], confined to the
interface between two immiscible liquids [7, 8], or sus-
pended in the liquid via a rod [9–12]. In a zero-gravity
environment, such as on the International Space Station,
three-dimensional suspensions of particles have been used
in crystal growth [13, 14]. It is found that stray vibra-
tions (g-jitter) [15] generate undesirable hydrodynamic
flows around the growing crystallites, which are known
to reduce the quality of the resulting crystals [16].

A strong magnetic field with a large vertical field gra-
dient can be used to suspend particles in a liquid, even if
the density of the particles is much greater than that of
the liquid [17]. Such an arrangement allows us to inves-
tigate non-linear hydrodynamic effects in a fully three-
dimensional fluid-particle system.

In this Letter we report experiments and simulations
carried out to investigate a novel hydrodynamic instabil-
ity exhibited by two identical spheres suspended magnet-
ically and vibrated freely in a liquid. Under vertical vi-
bration the spheres are attracted to each other and align
so that the line joining their centers lies perpendicular
to the axis of vibration [2–5]. As the amplitude of vi-

bration is increased beyond a critical value, the spheres
orbit each other in the horizontal plane, with no pre-
ferred sense of rotation. We have investigated the con-
ditions for the onset of this instability in terms of the
viscosity of the liquid, the amplitude and frequency of
the oscillation and the size and density of the spheres.
We have also carried out simulations which reproduce
the behavior observed experimentally both qualitatively
and quantitatively. The experiments and simulations re-
veal the existence of two jets emerging from the point of
contact of the two spheres. Above a critical amplitude
of vibration, the angle of the jets changes giving rise to
a net torque on the spheres.

Our experiments were carried out using a 17 Tesla su-
perconducting magnet (Oxford Instruments), details of
which are given in ref. [18]. Conditions for suspen-
sion are given in the supplementary information [19], see
also [17]. Pairs of equal-sized, highly spherical glass ball
lenses (CVI Melles Griot) of diameters d = 1, 2 or 3
mm were placed inside a transparent cylindrical cell of
internal diameter 34 mm and height 110 mm, containing
a paramagnetic solution of MnCl2. Varying amounts of
glycerol were added to adjust the fluid’s viscosity. The
cell was inserted into the vertical bore of the magnet,
and connected by a drive rod to a loudspeaker mounted
beneath the magnet [18] (supplementary fig. S1 [19]).
The spheres “levitate” in stable mechanical equilibrium
at a local minimum in the magneto-gravitational poten-
tial energy [20–22]. We measured the dimensionless peak
acceleration Γ = Aω2/g (where ω = 2πf is the angular
frequency of vibration) using an accelerometer mounted
on the loudspeaker, from which we determine the am-
plitude of vibration, A. Typically Γ was less than 7, the
frequency f was in the range 12-35 Hz, and the amplitude
was less than 5 mm. The cell was positioned so that the
stable levitation point was located near the cell’s center.

Experiments were also carried out using a pair of bis-
muth spheres which could be suspended in a water-
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FIG. 1: The main panel shows the collapse of the onset data
in terms of the dimensionless variables A∗

r
/d and δ/d. The

kinematic viscosity is in the range 1.13 − 2.43 mm2s−1 for 1
mm glass spheres; 2.76 − 8.37 mm2s−1, 2 mm glass; 7.14 −

14.9 mm2s−1, 3 mm glass; and 6.46 − 15.6 mm2s−1, 2.8 mm
bismuth shot. The inset shows the dependence of the scaled
orbital angular velocity Ω/ω on the scaled relative amplitude
Ar/δ for representative data sets. The points at Ω/ω = 0
are extrapolations; onsets determined from these points are
shown by filled symbols on the main panel.

glycerol mixture. In some of these experiments finely
crushed bismuth was added to the fluid. In the magnetic
field the bismuth powder levitated in the same region as
the pair of bismuth spheres. Under vibration the pow-
der formed a halo around the spheres which, owing to
the high reflectivity of the metal grains, could be used to
image the flow of the liquid in the vicinity of the spheres
[19].

Under vertical vibration, the spheres move relative to
the fluid owing to the difference between the inertial mass
of the particles and the fluid they displace, but do not
sediment owing to the equality of their effective gravita-

tional masses: the gravitational force on the spheres is
balanced by a buoyancy force that is enhanced by a mag-
netic force on the fluid. The spheres attract each other
due to the presence of streaming flows [23, 24] that form
when the cell is vibrated; these flows align the spheres
horizontally with the line joining their centers perpen-
dicular to the direction of vibration [2, 3].

We first describe the behavior of the glass spheres in
MnCl2 solution as we increased the amplitude A for a
fixed ω. For low values of A the spheres moved vertically
in response to the fluid motion, but there was no motion
of the spheres in the horizontal plane. Above a critical
value of A, which we label A∗, the spheres orbited each
other at a constant angular speed in the horizontal plane.

Although A is the quantity we measure experimentally,

FIG. 2: An image of the spheres taken from above when the
fluid is vibrated but there is no orbital motion. Colour is used
to enhance contrast. The vibration is applied along the direc-
tion perpendicular to the plane of this image. The red and
green streak lines indicate the steady streaming flow in the
plane of the spheres. There is a strong outward flow from the
contact point of the spheres and an inward flow elsewhere, as
illustrated by the white arrows. The superimposed black lines
show the corresponding streak lines obtained from simulation.

the relevant amplitude characterising the behaviour is
that of the oscillatory motion of the spheres relative to
the liquid far from the spheres, Ar. In general the relative
motion of the spheres differs in amplitude and phase from
the motion of the cell [25]. We determined Ar of the
pair of spheres as a function of the driving amplitude
A, angular frequency ω, and kinematic viscosity ν in an
independent set of experiments.

To quantify the instability we measured the relative
amplitude of vibration at the onset of the orbital motion
A∗

r for a range of particle sizes, fluid viscosities and vibra-
tion frequencies. For Ar > A∗

r the particles orbited each
other. As Ar was increased above A∗

r , the particles or-
bited at a faster rate and sometimes separated for higher
relative amplitudes. We obtained A∗

r by first increasing
Ar until rotation was observed. We then decreased Ar

slowly, measuring the rate of rotation Ω for each value of
Ar. Example data are shown in the inset to Fig. 1. For
small Ω/ω there is an approximate linear dependence on
Ar/δ. The onset amplitude A∗

r is determined by extrapo-
lating the linear portion of the data to zero rotation rate
Ω = 0.

If the transition is purely hydrodynamic (rather than
a magneto-hydrodynamic effect [19] or induced by un-
wanted vibrations of the apparatus) the onset can only
depend on three independent length scales : A∗

r , d, and
the viscous penetration depth δ = (ν/ω)1/2. Here we
assume that the cell is sufficiently large as to have no
influence on the instability; in all our experiments the
ratio of the diameter of the cell to the diameter of the
particle is greater than 10. In Fig. 1 we plot the ratio
A∗

r/d as a function of δ/d for the parameters given in the
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FIG. 3: A representation, obtained from simulation, of the
time-averaged vortex structure around the two spheres vi-
brated under conditions for which they are not rotating. The
closed loops represent the curl of the velocity field and are
schematic vortex lines as described in the text. The direction
of the arrows indicates the sense of rotation i.e. the direction
of the curl of the velocity field. The double-headed arrow
indicates the direction of vibration.

figure caption. It can be seen that there is a good col-
lapse of the data onto a single curve within experimental
error which confirms our assumptions that the transition
is purely hydrodynamic and that the cell is sufficiently
large. The part of the curve for δ/d < 0.13 (correspond-
ing to a particle Reynolds number Rep = Ard/δ

2 & 50)
lies close to a straight line through the origin, shown in
Fig. 1. This line corresponds to a value of the streaming
Reynolds number Res = A2

r/δ
2
≃ 52, which is indepen-

dent of the particle size [23].
For low values of Ar/d and δ/d there is no consistent

rotational instability. The lower limit of δ/d for which
we observe rotation corresponds to an upper limit on
the particle Reynolds number Rep ≃ 100 as indicated by
the lower arrow in Fig.1. For higher values of Rep the
particle’s motion becomes unsteady and no periodic or-
bital motion is observed. We speculate that this behavior
might be due to vortex shedding as has been observed in
simulation for a single sphere [26].
For δ/d greater than about 0.13 (Rep . 50) a gap

opens up between the particles before the spheres start
to orbit [3]. The data for which there is a gap appears to
collapse onto the hook-shaped part of the curve. How-
ever, if the spheres are stuck together with glue, the onset
of orbital motion falls on to the straight line through the
origin, as shown in Fig. 1. Our data is bounded for larger
values of δ/d by the limits of our experimental setup: the
vibratory waveform becomes significantly non-sinusoidal
below about 11Hz.
The inset to Fig. 1 shows the orbital angular velocity

Ω as a function of the relative amplitude Ar for represen-
tative sets of data. Rotation rates are symmetric for the
clockwise and anticlockwise directions. Markers on the
spheres show that during the motion the spheres appear

FIG. 4: Data from simulations showing the instantaneous flow
field and vorticity map in the equatorial plane of the spheres
under conditions for which they orbit anti-clockwise. The
direction of vibration is normal to the plane of the figure.
The small white arrows indicate the instantaneous flow and
the background colour map indicates the strength and sense
of the vorticity. Large arrows indicate the direction of the
orbital motion.

to slide around each other, with the markers maintaining
their orientation with respect to the cell. As Ar increases,
the orbital angular velocity Ω increases. Eventually the
particles separate at high rotation rates and the orbital
motion can become unstable. In general, the rotation
data cannot be collapsed in terms of Ar/d and δ/d be-
cause the introduction of an orbital time scale gives rise
to an extra length scale l = (Ω/ν)1/2. However, the ex-
trapolated value of Ar/δ to zero rotation rate should all
be the same, which they are within experimental error
arising from uncertainties in the measurement of the vis-
cosity.

Further experiments were carried out using bismuth
shot to ascertain the effect of changing the particle den-
sity. Using bismuth has the added benefit that we can
use crushed bismuth as tracer particles to help visualize
the streaming flow. An example of the flow pattern is
shown in Fig. 2. In this long-exposure image, the streak-
lines traced out by the bismuth powder appear as white
trails. The streakline photograph is focused to show the
horizontal flow in the plane through the centers of the
two spheres. The bismuth shot behaved in the same way
as the glass spheres, giving a similar data collapse for
the onset of orbital motion, as shown in Fig. 1. When
orbiting, the two bismuth shot particles move as a single
solid object instead of sliding past each other as the glass
spheres do. We attribute this behavior to the roughness
of the bismuth surface. However, this difference in mo-
tion is irrelevant as far as the onset of orbital motion is
concerned.

We were unable to obtain good images of the full three-
dimensional flow because of the confined space in the
bore of the magnet. In order to more fully understand
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the streaming flows and the cause of the instability we
carried out simulations based on a molecular-dynamics
treatment of the particles coupled to a numerical solution
of the continuum Navier-Stokes equations for the fluid.
Details of the simulation method and its validation can
be found in references [3, 5, 27] and in the supplementary
information [19].
Some data from simulation showing the rotation rates

and extrapolated onset amplitude are shown in the inset
and main panel of Fig. 1. The simulated streaming flows
under conditions for which there is no orbital motion, i.e.
Ar < A∗

r , are shown as black lines superposed onto the
photograph in Fig. 2. The simulation parameters were
similar to those in the experiments. To reduce numerical
noise we simulated vibration of the particles with the ap-
propriate Ar in a static fluid. It can be seen from Figs.
1 and 2 that the simulated rotation rates, onset ampli-
tude A∗

r and flows are in good quantitative agreement
with those found experimentally. The difference between
the simulated flow and experimentally observed flow at
large distances (& 5d) is due to finite size effects in the
simulation.
In both experiment and simulation we observe that,

in the plane of the two spheres, there are two strong
outward-flowing jets emerging from the region between
the two spheres and an inward flow elsewhere, as illus-
trated by the arrows on Fig. 2. This behavior is com-
pletely different from that of a single sphere under equiv-
alent conditions, where the equatorial flow is radially in-
wards towards the sphere everywhere [24, 26].
Using the simulations, we investigated the structure of

the full three-dimensional flow around the two spheres.
The local flow is best visualized from the vorticity of the
time-averaged velocity of the fluid. Fig. 3 shows four
pairs of loops; the arrows on the loops indicate the di-
rection of the circulation (local curl of the velocity field)
from which the fluid flow can be obtained by the right-
hand screw rule. The four pairs of loops represent all

the basic features of the flow pattern around the spheres,
but do not indicate its magnitude. The upper and lower
loops (pink) on the diagram show that, above and be-
low the spheres, the flow is predominantly away from the
spheres (i.e. up and down), as is the case for a single
sphere or two spheres vibrated on rigid rods [11]. The
left and right outer loops (green) represent inward flow
towards the spheres; for a single sphere this flow would
also be present but in that case the equatorial flow is in-
ward everywhere. The two, small inner loops (blue) rep-
resent the strong horizontal outward flow from between
the spheres, something which is not present for a single
sphere. The inner loops immediately above and below
the spheres (red) feed this outward flow.

As the amplitude is increased the vortices associated
with the jets become larger and the mirror symmetry of
the equatorial flow pattern, evident in Figs.2 and 3, is
broken. Now the direction of the jet is no longer perpen-
dicular to the line through the center of the two spheres,
as shown in Fig. 4. It is this broken symmetry that gives
rise to a net torque on the two spheres causing the or-
bital motion. The steady rotation rates that we observe,
shown in the inset to Fig. 1, are governed by the balance
between this torque and the viscous drag in the fluid.

Our findings show the usefulness of magnetic levitation
to investigate a fundamental problem in hydrodynamics.
This technique has allowed us to explore the full three-
dimensional flow around vibrated particulates without
the complications of boundary effects. We anticipate that
our work will open up new ways for manipulating and
ordering granular suspensions in a non-invasive way.
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