1,554 research outputs found

    Command generator tracker based direct model reference adaptive control of a PUMA 560 manipulator

    Get PDF
    This project dealt with the application of a Direct Model Reference Adaptive Control algorithm to the control of a PUMA 560 Robotic Manipulator. This chapter will present some motivation for using Direct Model Reference Adaptive Control, followed by a brief historical review, the project goals, and a summary of the subsequent chapters

    Explanation for Anomalous Shock Temperatures Measured by Neutron Resonance Spectroscopy

    Full text link
    Neutron resonance spectrometry (NRS) has been used to measure the temperature inside Mo samples during shock loading. The temperatures obtained were significantly higher than predicted assuming ideal hydrodynamic loading. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was calculated self-consistently with the shock jump conditions: this is necessary for a rigorous estimate of the locus of shock states accessible. Plastic flow was estimated to contribute a temperature rise of 53K compared with hydrodynamic flow. Simulations were performed of the operation of the explosively-driven projectile system used to induce the shock in the Mo sample. The simulations predicted that the projectile was significantly curved on impact, and still accelerating. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent temperature that would be deduced from the width of the neutron resonance by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo, in particular its equation of state.Comment: near-final version, waiting for final consent from an autho

    Shock and Release Temperatures in Molybdenum

    Full text link
    Shock and release temperatures in Mo were calculated, taking account of heating from plastic flow predicted using the Steinberg-Guinan model. Plastic flow was calculated self-consistently with the shock jump conditions: this is necessary for a rigorous estimate of the locus of shock states accessible. The temperatures obtained were significantly higher than predicted assuming ideal hydrodynamic loading. The temperatures were compared with surface emission spectrometry measurements for Mo shocked to around 60GPa and then released into vacuum or into a LiF window. Shock loading was induced by the impact of a planar projectile, accelerated by high explosive or in a gas gun. Surface velocimetry showed an elastic wave at the start of release from the shocked state; the amplitude of the elastic wave matched the prediction to around 10%, indicating that the predicted flow stress in the shocked state was reasonable. The measured temperatures were consistent with the simulations, indicating that the fraction of plastic work converted to heat was in the range 70-100% for these loading conditions

    Double-Rashba materials for nanocrystals with bright ground-state excitons

    Full text link
    While nanoscale semiconductor crystallites provide versatile fluorescent materials for light-emitting devices, such nanocrystals suffer from the "dark exciton"\unicode{x2014}an optically inactive electronic state into which the nanocrystal relaxes before emitting. Recently, a theoretical mechanism was discovered that can potentially defeat the dark exciton. The Rashba effect can invert the order of the lowest-lying levels, creating a bright excitonic ground state. To identify materials that exhibit this behavior, here we perform an extensive high-throughput computational search of two large open-source materials databases. Based on a detailed understanding of the Rashba mechanism, we define proxy criteria and screen over 500,000 solids, generating 173 potential "bright-exciton" materials. We then refine this list with higher-level first-principles calculations to obtain 28 candidates. To confirm the potential of these compounds, we select five and develop detailed effective-mass models to determine the nature of their lowest-energy excitonic state. We find that four of the five solids (BiTeCl, BiTeI, Ga2_2Te3_3, and KIO3_3) can yield bright ground-state excitons. Our approach thus reveals promising materials for future experimental investigation of bright-exciton nanocrystals.Comment: 19 pages, 4 figure

    A general framework for animal density estimation from acoustic detections across a fixed microphone array

    Get PDF
    Acoustic monitoring can be an efficient, cheap, nonā€invasive alternative to physical trapping of individuals. Spatially explicit captureā€“recapture (SECR) methods have been proposed to estimate calling animal abundance and density from data collected by a fixed array of microphones. However, these methods make some assumptions that are unlikely to hold in many situations, and the consequences of violating these are yet to be investigated. We generalize existing acoustic SECR methodology, enabling these methods to be used in a much wider variety of situations. We incorporate timeā€ofā€arrival (TOA) data collected by the microphone array, increasing the precision of calling animal density estimates. We use our method to estimate calling male density of the Cape Peninsula Moss Frog Arthroleptella lightfooti. Our method gives rise to an estimator of calling animal density that has negligible bias, and 95% confidence intervals with appropriate coverage. We show that using TOA information can substantially improve estimate precision. Our analysis of the A. lightfooti data provides the first statistically rigorous estimate of calling male density for an anuran population using a microphone array. This method fills a methodological gap in the monitoring of frog populations and is applicable to acoustic monitoring of other species that call or vocalize

    Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection

    Full text link
    We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference Ī”Tc\Delta T_c for Rayleigh-B\'enard convection. The structure factor of the fluctuating convection rolls is consistent with the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to 1/āˆ’Ļµ1/\sqrt{-\epsilon} where Ļµā‰”Ī”T/Ī”Tcāˆ’1\epsilon \equiv \Delta T / \Delta T_c -1. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file (using uufiles package). Detailed instructions of unpacking are include
    • ā€¦
    corecore