23 research outputs found

    Severe pulmonary arterial hypertension is characterized by increased neutrophil elastase and relative elafin deficiency

    Get PDF
    BACKGROUND: Preclinical evidence implicates neutrophil elastase (NE) in PAH pathogenesis, and the NE inhibitor elafin is under early therapeutic investigation. RESEARCH QUESTION: Are circulating NE and elafin levels abnormal in PAH and associated with clinical severity? STUDY DESIGN/METHODS: . In an observational Stanford University PAH cohort (N=249), plasma NE and elafin were measured in comparison to healthy controls (N=106) then related to clinical features and relevant ancillary biomarkers. Cox regression models were fitted with cubic spline functions to associate NE and elafin with survival. To validate prognostic relationships, we analyzed two United Kingdom cohorts (N=75, N=357). Mixed effects models evaluated NE and elafin changes during disease progression. Finally, we studied effects of NE/elafin balance on pulmonary artery endothelial cells (PAECs) from PAH patients. RESULTS: Relative to controls, patients had increased NE (205.1 [123.6-387.3] vs. 97.6 [74.4-126.6] ng/mL, P168.5 ng/mL portended increased mortality risk after adjustment for known clinical predictors (HR 2.52, CI 1.36-4.65, P=0.003) or prognostic cytokines (HR 2.63, CI 1.42-4.87, P=0.001), and NE added incremental value to established PAH risk scores. Similar prognostic thresholds were identified in validation cohorts. Longitudinal NE changes tracked with clinical trends and outcomes. PAH-PAECs exhibited increased apoptosis and attenuated angiogenesis when exposed to NE at the level observed in patients' blood. Elafin rescued PAEC homeostasis, yet the required dose exceeded levels found in patients. INTERPRETATION: NE is increased and elafin deficient across PAH subtypes. NE associates with disease severity and outcomes, and this target-specific biomarker could facilitate therapeutic development of elafin

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease

    Get PDF
    \ua9 2023Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). Funding: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood

    Get PDF
    Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease diagnosed by right heart catheterisation and the exclusion of other forms of pulmonary arterial hypertension, producing a heterogeneous population with varied treatment response. Here we show unsupervised machine learning identification of three major patient subgroups that account for 92% of the cohort, each with unique whole blood transcriptomic and clinical feature signatures. These subgroups are associated with poor, moderate, and good prognosis. The poor prognosis subgroup is associated with upregulation of the ALAS2 and downregulation of several immunoglobulin genes, while the good prognosis subgroup is defined by upregulation of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of HLA-DPA1/DPB1 (independently associated with survival). These findings independently validated provide evidence for the existence of 3 major subgroups (endophenotypes) within the IPAH classification, could improve risk stratification and provide molecular insights into the pathogenesis of IPAH

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis

    Get PDF
    Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10– Âč⁔) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65×10– ÂČ⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69×10– ÂčÂČ; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, UniversitĂ© Paris-Sud, and French ANR

    Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension

    Get PDF
    Pulmonary hypertension is a condition with limited effective treatment options. Chronic thromboembolic pulmonary hypertension (CTEPH) is a notable exception with pulmonary endarterectomy (PEA) often proving curative. This study investigated the plasma metabolome of CTEPH patients, estimated reversibility to an effective treatment and explored the source of metabolic perturbations. We performed untargeted analysis of plasma metabolites in CTEPH patients compared to healthy controls and disease comparators. Changes in metabolic profile were evaluated in response to PEA. A subset of patients were sampled at three anatomical locations and plasma metabolite gradients calculated. We defined and validated altered plasma metabolite profiles in patients with CTEPH. 12 metabolites were confirmed by ROC analysis to distinguish CTEPH and both healthy (AUCs 0.64–0.94, all p<2×10−5) and disease controls (AUCs 0.58–0.77, all p<0.05. Many of the metabolic changes were notably similar to those observed in idiopathic pulmonary arterial hypertension (IPAH). Only five metabolites (5-methylthioadenosine, N1-methyladenosine, N1-methylinosine, 7-methylguanine, N-formylmethionine) distinguished CTEPH from chronic thromboembolic disease or IPAH. Significant corrections (15–100% of perturbation) in response to PEA were observed in some but not all metabolites. Anatomical sampling identified 188 plasma metabolites, with significant gradients in tryptophan, sphingomyelin, methionine, and Krebs cycle metabolites . Metabolites associated with CTEPH and gradients also showed significant associations with clinical measures of disease severity. We identified a specific metabolic profile that distinguishes CTEPH from controls and disease comparators, despite the observation that most metabolic changes were common to both CTEPH and IPAH patients. Plasma metabolite gradients implicate cardiopulmonary tissue metabolism of metabolites associated with PH and metabolites that respond to PEA surgery could be a suitable non-invasive marker for evaluating future targeted therapeutic interventions

    Mining the plasma proteome for insights into the molecular pathology of pulmonary arterial hypertension.

    No full text
    RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by structural remodelling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. OBJECTIVES: To quantify and analyse the plasma proteome of PAH patients using inherited genetic variation to inform on underlying molecular drivers. METHODS: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers and 23 relatives of PAH patients. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared and the relationship to transplantation-free survival in PAH determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomisation (MR) analysis. MEASUREMENTS AND MAIN RESULTS: From 4,152 annotated plasma proteins, levels of 208 differed between PAH patients and healthy subjects and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR] 1.55, 95%-confidence interval [CI] 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR 0.83, 95%-CI 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. CONCLUSIONS: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH

    Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension.

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disease that leads to premature death from right heart failure. It is strongly associated with elevated red cell distribution width (RDW), a correlate of several iron status biomarkers. High RDW values can signal early stage iron deficiency or iron deficiency anaemia. This study investigated if elevated RDW is causally associated with PAH.A two-sample Mendelian randomisation (MR) approach was applied to investigate whether genetic predisposition to higher levels of RDW increases the odds of developing PAH. Primary and secondary MR analyses were performed using all available genome-wide significant RDW variants (n=179) and five genome-wide significant RDW variants that act via systemic iron status, respectively.We confirmed the observed association between RDW and PAH (OR=1.90, 95% CI=1.80-2.01) in a multi-centre case-control study (N cases=642, N disease controls=15 889). The primary MR analysis was adequately powered to detect a causal effect (OR) from between 1.25 and 1.52 or greater based on estimates reported in the RDW GWAS or from our own data. There was no evidence for a causal association between RDW and PAH in either the primary (ORcausal=1.07, 95% CI=0.92-1.24) or the secondary (ORcausal=1.09, 95% CI=0.77-1.54) MR analysis.The results suggest that at least some of the observed association of RDW with PAH is secondary to disease progression. Results of iron therapeutic trials in PAH should be interpreted with caution as any improvements observed may not be mechanistically linked to the development of PAH
    corecore