4 research outputs found

    Ferrierite and Its Delaminated Forms Modified with Copper as Effective Catalysts for NH3-SCO Process

    Get PDF
    [EN] Ferrierites and their delaminated forms (ITQ-6), containing aluminum or titanium in the zeolite framework, were synthetized and modified with copper by an ion-exchange method. The obtained samples were characterized with respect to their chemical composition (ICP-OES), structure (XRD, UV-Vis DRS), textural parameters (N-2-sorption), surface acidity (NH3-TPD), form and reducibility of deposited copper species (UV-Vis DRS and H-2-TPR). Ferrierites and delaminated ITQ-6 zeolites modified with copper were studied as catalysts for the selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO). It was shown that aggregated copper oxide species, which were preferentially formed on Ti-zeolites, were catalytically active in direct low-temperature ammonia oxidation to NO, while copper introduced into Al-zeolites was present mainly in the form of monomeric copper cations catalytically active in selective reduction of NO by ammonia to dinitrogen. It was postulated that ammonia oxidation in the presence of the studied catalysts proceeds according to the internal-selective catalytic reduction mechanism (i-SCR) and therefore the suitable ratio between aggregated copper oxide species and monomeric copper cations is necessary to obtain active and selective catalysts for the NH3-SCO process. Cu/Al-ITQ-6 presented the best catalytic properties possibly due to the most optimal ratio of these copper species.The studies financed by National Science Centre-Poland [2016/21/B/ST5/00242]. A.. has been partly supported by the EU Project POWR.03.02.00-00-I004/16. U.D. acknowledges the Spanish Government for the funding [MAT2017-82288-C2-1-P]. Part of the research was done with equipment purchased in the frame of European Regional Development Fund (Polish Innovation Economy Operational Program (POIG.02.01.00-12-023/08)).Swies, A.; Rutkowska, M.; Kowalczyk, A.; Díaz Morales, UM.; Palomares Gimeno, AE.; Chmielarz, L. (2020). Ferrierite and Its Delaminated Forms Modified with Copper as Effective Catalysts for NH3-SCO Process. Materials. 13(21):1-18. https://doi.org/10.3390/ma13214885S118132

    Ferrierite and Its Delaminated and Silica-Intercalated Forms Modified with Copper as Effective Catalysts for NH3-SCR Process

    Get PDF
    [EN] The main goal of the study was the development of effective catalysts for the low-temperature selective catalytic reduction of NO with ammonia (NH3-SCR), based on ferrierite (FER) and its delaminated (ITQ-6) and silica-intercalated (ITQ-36) forms modified with copper. The copper exchange zeolitic samples, with the intended framework Si/Al ratio of 30 and 50, were synthetized and characterized with respect to their chemical composition (ICP-OES), structure (XRD), texture (low-temperature N(2)adsorption), form and aggregation of deposited copper species (UV-vis-DRS), surface acidity (NH3-TPD) and reducibility (H-2-TPR). The samples of the Cu-ITQ-6 and Cu-ITQ-36 series were found to be significantly more active NH3-SCR catalysts compared to Cu-FER. The activity of these catalysts in low-temperature NH3-SCR was assigned to the significant contribution of highly dispersed copper species (monomeric cations and small oligomeric species) catalytically active in the oxidation of NO to NO(2,)which is necessary for fast-SCR. The zeolitic catalysts, with the higher framework alumina content, were more effective in high-temperature NH3-SCR due to their limited catalytic activity in the side reaction of ammonia oxidation.This work was supported by the National Science Centre-Poland [2016/21/B/ST5/00242].Swies, A.; Kowalczyk, A.; Rutkowska, M.; Díaz Morales, UM.; Palomares Gimeno, AE.; Chmielarz, L. (2020). Ferrierite and Its Delaminated and Silica-Intercalated Forms Modified with Copper as Effective Catalysts for NH3-SCR Process. Catalysts. 10(7):1-21. https://doi.org/10.3390/catal10070734S121107Kowalczyk, A., Święs, A., Gil, B., Rutkowska, M., Piwowarska, Z., Borcuch, A., … Chmielarz, L. (2018). Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Applied Catalysis B: Environmental, 237, 927-937. doi:10.1016/j.apcatb.2018.06.052Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18(1-2), 1-36. doi:10.1016/s0926-3373(98)00040-xKompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008Moon Lee, S., Su Kim, S., & Chang Hong, S. (2012). Systematic mechanism study of the high temperature SCR of NO by NH3 over a W/TiO2 catalyst. Chemical Engineering Science, 79, 177-185. doi:10.1016/j.ces.2012.05.032Mladenović, M., Paprika, M., & Marinković, A. (2018). Denitrification techniques for biomass combustion. Renewable and Sustainable Energy Reviews, 82, 3350-3364. doi:10.1016/j.rser.2017.10.054Rutkowska, M., Pacia, I., Basąg, S., Kowalczyk, A., Piwowarska, Z., Duda, M., … Chmielarz, L. (2017). Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH 3 -SCR and NH 3 -SCO processes. Microporous and Mesoporous Materials, 246, 193-206. doi:10.1016/j.micromeso.2017.03.017Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016Jodłowski, P. J., Kuterasiński, Ł., Jędrzejczyk, R. J., Chlebda, D., Gancarczyk, A., Basąg, S., & Chmielarz, L. (2017). DeNOx Abatement Modelling over Sonically Prepared Copper USY and ZSM5 Structured Catalysts. Catalysts, 7(7), 205. doi:10.3390/catal7070205Boroń, P., Chmielarz, L., & Dzwigaj, S. (2015). Influence of Cu on the catalytic activity of FeBEA zeolites in SCR of NO with NH 3. Applied Catalysis B: Environmental, 168-169, 377-384. doi:10.1016/j.apcatb.2014.12.052Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200hShan, Y., Sun, Y., Du, J., Zhang, Y., Shi, X., Yu, Y., … He, H. (2020). Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. Applied Catalysis B: Environmental, 275, 119105. doi:10.1016/j.apcatb.2020.119105Clark, A. H., Nuguid, R. J. G., Steiger, P., Marberger, A., Petrov, A. W., Ferri, D., … Kröcher, O. (2020). Selective Catalytic Reduction of NO with NH 3 on Cu−SSZ‐13: Deciphering the Low and High‐temperature Rate‐limiting Steps by Transient XAS Experiments. ChemCatChem, 12(5), 1429-1435. doi:10.1002/cctc.201901916Shan, Y., Du, J., Yu, Y., Shan, W., Shi, X., & He, H. (2020). Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. Applied Catalysis B: Environmental, 266, 118655. doi:10.1016/j.apcatb.2020.118655Marosz, M., Samojeden, B., Kowalczyk, A., Rutkowska, M., Motak, M., Díaz, U., … Chmielarz, L. (2020). MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration. Materials, 13(10), 2399. doi:10.3390/ma13102399Chmielarz, L., & Jabłońska, M. (2015). Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. RSC Advances, 5(54), 43408-43431. doi:10.1039/c5ra03218kDe Pietre, M. K., Bonk, F. A., Rettori, C., Garcia, F. A., & Pastore, H. O. (2011). [V,Al]-ITQ-6: Novel porous material and the effect of delamination conditions on V sites and their distribution. Microporous and Mesoporous Materials, 145(1-3), 108-117. doi:10.1016/j.micromeso.2011.04.031Radko, M., Rutkowska, M., Kowalczyk, A., Mikrut, P., Święs, A., Díaz, U., … Chmielarz, L. (2020). Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. Microporous and Mesoporous Materials, 302, 110219. doi:10.1016/j.micromeso.2020.110219Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6Ishihara, A., Hashimoto, T., & Nasu, H. (2012). Large Mesopore Generation in an Amorphous Silica-Alumina by Controlling the Pore Size with the Gel Skeletal Reinforcement and Its Application to Catalytic Cracking. Catalysts, 2(3), 368-385. doi:10.3390/catal2030368Thommes, M. (2010). Physical Adsorption Characterization of Nanoporous Materials. Chemie Ingenieur Technik, 82(7), 1059-1073. doi:10.1002/cite.201000064Hu, H., Ke, M., Zhang, K., Liu, Q., Yu, P., Liu, Y., … Liu, W. (2017). Designing ferrierite-based catalysts with improved properties for skeletal isomerization of n-butene to isobutene. RSC Advances, 7(50), 31535-31543. doi:10.1039/c7ra04777kDomokos, L., Lefferts, L., Seshan, K., & Lercher, J. . (2000). The importance of acid site locations for n-butene skeletal isomerization on ferrierite. Journal of Molecular Catalysis A: Chemical, 162(1-2), 147-157. doi:10.1016/s1381-1169(00)00286-7Cañizares, P., & Carrero, A. (2003). Dealumination of ferrierite by ammonium hexafluorosilicate treatment: characterization and testing in the skeletal isomerization of n-butene. Applied Catalysis A: General, 248(1-2), 227-237. doi:10.1016/s0926-860x(03)00159-5Wichterlová, B., Tvarůžková, Z., Sobalı́k, Z., & Sarv, P. (1998). Determination and properties of acid sites in H-ferrierite. Microporous and Mesoporous Materials, 24(4-6), 223-233. doi:10.1016/s1387-1811(98)00167-xThibault-Starzyk, F., Stan, I., Abelló, S., Bonilla, A., Thomas, K., Fernandez, C., … Pérez-Ramírez, J. (2009). Quantification of enhanced acid site accessibility in hierarchical zeolites – The accessibility index. Journal of Catalysis, 264(1), 11-14. doi:10.1016/j.jcat.2009.03.006Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., & Chmielarz, L. (2016). Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol. Materials Research Bulletin, 74, 425-435. doi:10.1016/j.materresbull.2015.11.018Huo, Q., Margolese, D. I., & Stucky, G. D. (1996). Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials, 8(5), 1147-1160. doi:10.1021/cm960137hMartins, L., Peguin, R. P. S., Wallau, M., & Urquieta, G. A. (2004). Cu-, Co-, Cu/Ca- and Co/Ca-exchanged ZSM-5 zeolites: Activity in the reduction of NO with methane or propane. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2475-2483. doi:10.1016/s0167-2991(04)80513-5Carniti, P., Gervasini, A., Modica, V. H., & Ravasio, N. (2000). Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas. Applied Catalysis B: Environmental, 28(3-4), 175-185. doi:10.1016/s0926-3373(00)00172-7Minchev, C., Köhn, R., Tsoncheva, T., Dimitrov, M., & Fröba, M. (2001). 07-P-19-Preparation and characterization of copper oxide modified MCM-41 molecular sieves. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 253. doi:10.1016/s0167-2991(01)81539-1Martins, L., Peguin, R. P. S., & Urquiet-González, E. A. (2006). Cu and Co exchanged ZSM-5 zeolites: activity towards no reduction and hydrocarbon oxidation. Química Nova, 29(2), 223-229. doi:10.1590/s0100-40422006000200009Sullivan, J. A., & Cunningham, J. (1998). Selective catalytic reduction of NO with C2H4 over Cu/ZSM-5: Influences of oxygen partial pressure and incorporated rhodia. Applied Catalysis B: Environmental, 15(3-4), 275-289. doi:10.1016/s0926-3373(97)00055-6Yang, X., Wang, X., Qiao, X., Jin, Y., & Fan, B. (2020). Effect of Hydrothermal Aging Treatment on Decomposition of NO by Cu-ZSM-5 and Modified Mechanism of Doping Ce against This Influence. Materials, 13(4), 888. doi:10.3390/ma1304088

    Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites

    Get PDF
    [EN] Titanosilicate ferrierite zeolite (FER) and its delaminated form (ITQ-6), with various Si/Ti molar ratios, were synthetized and tested as catalysts for diphenyl sulfide (Ph2S) and dimethyl sulfide (DMS) oxidation with H2O2. The zeolites were characterized with respect to their chemical composition (ICP-OES), structure (XRD, UV-vis DRS) and texture (low-temperature N-2 adsorption-desorption). Titanium in the FER and ITQ-6 samples was present mainly in the zeolite framework with a significant contribution of titanium in the extraframework positions. Titanosilicate zeolites of FER and ITQ-6 series were found to be active catalysts of diphenyl and dimethyl sulfides oxidation by H2O2 to sulfoxides (Ph2SO/DMSO) and sulfones (Ph2SO2/DMSO2). The efficiency of these reactions depends on the porous structure of the zeolite catalysts - conversion of larger molecules of diphenyl sulfide was significantly higher in the presence of delaminated zeolite Ti-ITQ-6 due to the possibility of the interlayer mesopores penetration by reactants. On the other side diphenyl sulfide molecules are too large to be accommodated into micropores of FER zeolite. The efficiency of dimethyl sulfide conversion, due to relatively small size of this molecule, was similar in the presence of Ti-FER and Ti-ITQ-6 zeolites. For all catalysts, the organic sulfide conversion was significantly intensified under UV irradiation. It was suggested that Ti cations in the zeolite framework, as well as in the extraframework, species play a role of the single site photocatalysts active in the formation of hydroxyl radicals, which are known to be effective oxidants of the organic sulfides.The studies were carried out in the frame of project 2016/21/B/ST5/00242 from the National Science Centre (Poland). Part of the research was done with equipment purchased in the frame of European Regional Development Fund (Polish Innovation Economy Operational Program -contract no. POIG.02.01.00-12-023/08). U.D. acknowledges to the Spanish Government by the funding (MAT2017-82288-C2-1-P). The work was partially supported by the Foundation for Polish Science (FNP) within the TEAM project (POIR.04.04.00-00-3D74/16).Radko, M.; Rutkowska, M.; Kowalczyk, A.; Mikrut, P.; Swies, A.; Díaz Morales, UM.; Palomares Gimeno, AE.... (2020). Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. Microporous and Mesoporous Materials. 302:1-9. https://doi.org/10.1016/j.micromeso.2020.110219S19302Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Solsona, B., Lopez Nieto, J. M., & Díaz, U. (2006). Siliceous ITQ-6: A new support for vanadia in the oxidative dehydrogenation of propane. Microporous and Mesoporous Materials, 94(1-3), 339-347. doi:10.1016/j.micromeso.2006.04.007Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130Shevade, S., Ahedi, R. K., & Kotasthane, A. N. (1997). Catalysis Letters, 49(1/2), 69-75. doi:10.1023/a:1019092918937Anand, R., Shevade, S. S., Ahedi, R. K., Mirajkar, S. P., & Rao, B. S. (1999). Catalysis Letters, 62(2/4), 209-213. doi:10.1023/a:1019099006237Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). Ti-ferrierite and TiITQ-6: synthesis and catalytic activity for the epoxidation of olefins with H2O2. Chemical Communications, (2), 137-138. doi:10.1039/a908748fMartausová, I., Spustová, D., Cvejn, D., Martaus, A., Lacný, Z., & Přech, J. (2019). Catalytic activity of advanced titanosilicate zeolites in hydrogen peroxide S-oxidation of methyl(phenyl)sulfide. Catalysis Today, 324, 144-153. doi:10.1016/j.cattod.2018.07.003Kon, Y., Yokoi, T., Yoshioka, M., Uesaka, Y., Kujira, H., Sato, K., & Tatsumi, T. (2013). Selective oxidation of bulky sulfides to sulfoxides over titanosilicates having an MWW structure in the presence of H2O2 under organic solvent-free conditions. Tetrahedron Letters, 54(36), 4918-4921. doi:10.1016/j.tetlet.2013.07.006Přech, J. (2017). Catalytic performance of advanced titanosilicate selective oxidation catalysts – a review. Catalysis Reviews, 60(1), 71-131. doi:10.1080/01614940.2017.1389111Sato, K., Hyodo, M., Aoki, M., Zheng, X.-Q., & Noyori, R. (2001). Oxidation of sulfides to sulfoxides and sulfones with 30% hydrogen peroxide under organic solvent- and halogen-free conditions. Tetrahedron, 57(13), 2469-2476. doi:10.1016/s0040-4020(01)00068-0Radko, M., Kowalczyk, A., Bidzińska, E., Witkowski, S., Górecka, S., Wierzbicki, D., … Chmielarz, L. (2018). Titanium dioxide doped with vanadium as effective catalyst for selective oxidation of diphenyl sulfide to diphenyl sulfonate. Journal of Thermal Analysis and Calorimetry, 132(3), 1471-1480. doi:10.1007/s10973-018-7119-9Xia, Q.-H., & Tatsumi, T. (2005). Crystallization kinetics of nanosized Tiβ zeolites with high oxidation activity by a dry-gel conversion technique. Materials Chemistry and Physics, 89(1), 89-98. doi:10.1016/j.matchemphys.2004.08.034Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777kChica, A., Diaz, U., Fornés, V., & Corma, A. (2009). Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 147(3-4), 179-185. doi:10.1016/j.cattod.2008.10.046Hu, H., Ke, M., Zhang, K., Liu, Q., Yu, P., Liu, Y., … Liu, W. (2017). Designing ferrierite-based catalysts with improved properties for skeletal isomerization of n-butene to isobutene. RSC Advances, 7(50), 31535-31543. doi:10.1039/c7ra04777kThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Corma, A., Fornes, V., & Rey, F. (2002). Delaminated Zeolites: An Efficient Support for Enzymes. Advanced Materials, 14(1), 71-74. doi:10.1002/1521-4095(20020104)14:13.0.co;2-wZukal, A., Dominguez, I., Mayerová, J., & Čejka, J. (2009). Functionalization of Delaminated Zeolite ITQ-6 for the Adsorption of Carbon Dioxide. Langmuir, 25(17), 10314-10321. doi:10.1021/la901156zSegura, Y., Chmielarz, L., Kustrowski, P., Cool, P., Dziembaj, R., & Vansant, E. F. (2005). Characterisation and reactivity of vanadia–titania supported SBA-15 in the SCR of NO with ammonia. Applied Catalysis B: Environmental, 61(1-2), 69-78. doi:10.1016/j.apcatb.2005.04.011Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406nBlasco, T., Corma, A., Navarro, M. T., & Pariente, J. P. (1995). Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of Catalysis, 156(1), 65-74. doi:10.1006/jcat.1995.1232Yang, B.-T., & Wu, P. (2014). Post-synthesis and catalytic performance of FER type sub-zeolite Ti-ECNU-8. Chinese Chemical Letters, 25(12), 1511-1514. doi:10.1016/j.cclet.2014.09.003Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Gil, B., Adamski, A., Dudek, B., & Michalik, M. (2009). Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 91(1-2), 449-459. doi:10.1016/j.apcatb.2009.06.014Radko, M., Kowalczyk, A., Mikrut, P., Witkowski, S., Mozgawa, W., Macyk, W., & Chmielarz, L. (2020). Catalytic and photocatalytic oxidation of diphenyl sulphide to diphenyl sulfoxide over titanium dioxide doped with vanadium, zinc, and tin. RSC Advances, 10(7), 4023-4031. doi:10.1039/c9ra09903dBordiga, S., Bonino, F., Damin, A., & Lamberti, C. (2007). Reactivity of Ti(iv) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Physical Chemistry Chemical Physics, 9(35), 4854. doi:10.1039/b706637fTozzola, G., Mantegazza, M. A., Ranghino, G., Petrini, G., Bordiga, S., Ricchiardi, G., … Zecchina, A. (1998). On the Structure of the Active Site of Ti-Silicalite in Reactions with Hydrogen Peroxide: A Vibrational and Computational Study. Journal of Catalysis, 179(1), 64-71. doi:10.1006/jcat.1998.2205Novara, C., Alfayate, A., Berlier, G., Maurelli, S., & Chiesa, M. (2013). The interaction of H2O2 with TiAlPO-5 molecular sieves: probing the catalytic potential of framework substituted Ti ions. Physical Chemistry Chemical Physics, 15(26), 11099. doi:10.1039/c3cp51214bChen, L. ., Jaenicke, S., Chuah, G. ., & Ang, H. . (1996). UV absorption study of solid catalysts. Journal of Electron Spectroscopy and Related Phenomena, 82(3), 203-208. doi:10.1016/s0368-2048(96)03072-1Karlsen, E., & Schöffel, K. (1996). Titanium-silicalite catalyzed epoxidation of ethylene with hydrogen peroxide. A theoretical study. Catalysis Today, 32(1-4), 107-114. doi:10.1016/s0920-5861(96)00176-9Juan, Z., Dishun, Z., Liyan, Y., & Yongbo, L. (2010). Photocatalytic oxidation dibenzothiophene using TS-1. Chemical Engineering Journal, 156(3), 528-531. doi:10.1016/j.cej.2009.04.032Lee, G. D., Jung, S. K., Jeong, Y. J., Park, J. H., Lim, K. T., Ahn, B. H., & Hong, S. S. (2003). Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts. Applied Catalysis A: General, 239(1-2), 197-208. doi:10.1016/s0926-860x(02)00389-7Howe, R. F., & Krisnandi, Y. K. (2001). Photoreactivity of ETS-10. Chemical Communications, (17), 1588-1589. doi:10.1039/b104870

    Ferrierite and Its Delaminated and Silica-Intercalated Forms Modified with Copper as Eective Catalysts for NH3-SCR Process

    No full text
    The main goal of the study was the development of eective catalysts for the low-temperature selective catalytic reduction of NO with ammonia (NH3-SCR), based on ferrierite (FER) and its delaminated (ITQ-6) and silica-intercalated (ITQ-36) forms modified with copper. The copper exchange zeolitic samples, with the intended framework Si/Al ratio of 30 and 50, were synthetized and characterized with respect to their chemical composition (ICP-OES), structure (XRD), texture (low-temperature N2 adsorption), form and aggregation of deposited copper species (UV-vis-DRS), surface acidity (NH3-TPD) and reducibility (H2-TPR). The samples of the Cu-ITQ-6 and Cu-ITQ-36 series were found to be significantly more active NH3-SCR catalysts compared to Cu-FER. The activity of these catalysts in low-temperature NH3-SCR was assigned to the significant contribution of highly dispersed copper species (monomeric cations and small oligomeric species) catalytically active in the oxidation of NO to NO2, which is necessary for fast-SCR. The zeolitic catalysts, with the higher framework alumina content, were more eective in high-temperature NH3-SCR due to their limited catalytic activity in the side reaction of ammonia oxidation.The studies financed by National Science Centre–Poland [2016/21/B/ST5/00242]. A.´S. has been partly supported by the EU Project POWR.03.02.00-00-I004/16. U.D. acknowledges the Spanish Government for the funding [MAT2017-82288-C2-1-P]. Part of the research was done with equipment purchased in the frame of European Regional Development Fund (Polish Innovation Economy Operational Program (POIG.02.01.00-12-023/08))
    corecore