79 research outputs found

    Evolutionary dynamics of cancer cell populations under immune selection pressure and optimal control of chemotherapy

    Get PDF
    Increasing experimental evidence suggests that epigenetic and microenvironmental factors play a key role in cancer progression. In this respect, it is now generally recognized that the immune system can act as an additional selective pressure, which modulates tumor development and leads, through cancer immunoediting, to the selection for resistance to immune effector mechanisms. This may have serious implications for the design of effective anti-cancer protocols. Motivated by these considerations, we present a mathematical model for the dynamics of cancer and immune cells under the effects of chemotherapy and immunity-boosters. Tumor cells are modeled as a population structured by a continuous phenotypic trait, that is related to the level of resistance to receptor-induced cell death triggered by effector lymphocytes. The level of resistance can vary over time due to the effects of epigenetic modifications. In the asymptotic regime of small epimutations, we highlight the ability of the model to reproduce cancer immunoediting. In an optimal control framework, we tackle the problem of designing effective anti-cancer protocols. The results obtained suggest that chemotherapeutic drugs characterized by high cytotoxic effects can be useful for treating tumors of large size. On the other hand, less cytotoxic chemotherapy in combination with immunity-boosters can be effective against tumors of smaller size. Taken together, these results support the development of therapeutic protocols relying on combinations of less cytotoxic agents and immune-boosters to fight cancer in the early stages. © EDP Sciences, 2014

    Gene signature of the post-Chernobyl papillary thyroid cancer

    Get PDF
    Purpose: Following the nuclear accidents in Chernobyl and later in Fukushima, the nuclear community has been faced with important issues concerning how to search for and diagnose biological consequences of low-dose internal radiation contamination. Although after the Chernobyl accident an increase in childhood papillary thyroid cancer (PTC) was observed, it is still not clear whether the molecular biology of PTCs associated with low-dose radiation exposure differs from that of sporadic PTC. Methods: We investigated tissue samples from 65 children/young adults with PTC using DNA microarray (Affymetrix, Human Genome U133 2.0 Plus) with the aim of identifying molecular differences between radiation-induced (exposed to Chernobyl radiation, ECR) and sporadic PTC. All participants were resident in the same region so that confounding factors related to genetics or environment were minimized. Results: There were small but significant differences in the gene expression profiles between ECR and non-ECR PTC (global test, p < 0.01), with 300 differently expressed probe sets (p < 0.001) corresponding to 239 genes. Multifactorial analysis of variance showed that besides radiation exposure history, the BRAF mutation exhibited independent effects on the PTC expression profile; the histological subset and patient age at diagnosis had negligible effects. Ten genes (PPME1, HDAC11, SOCS7, CIC, THRA, ERBB2, PPP1R9A, HDGF, RAD51AP1, and CDK1) from the 19 investigated with quantitative RT-PCR were confirmed as being associated with radiation exposure in an independent, validation set of samples. Conclusion: Significant, but subtle, differences in gene expression in the post-Chernobyl PTC are associated with previous low-dose radiation exposure

    Downregulation of histone H2A and H2B pathways is associated with anthracycline sensitivity in breast cancer

    Get PDF
    Abstract Background Drug resistance in breast cancer is the major obstacle to effective treatment with chemotherapy. While upregulation of multidrug resistance genes is an important component of drug resistance mechanisms in vitro, their clinical relevance remains to be determined. Therefore, identifying pathways that could be targeted in the clinic to eliminate anthracycline-resistant breast cancer remains a major challenge. Methods We generated paired native and epirubicin-resistant MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines to identify pathways contributing to anthracycline resistance. Native cell lines were exposed to increasing concentrations of epirubicin until resistant cells were generated. To identify mechanisms driving epirubicin resistance, we used a complementary approach including gene expression analyses to identify molecular pathways involved in resistance, and small-molecule inhibitors to reverse resistance. In addition, we tested its clinical relevance in a BR9601 adjuvant clinical trial. Results Characterisation of epirubicin-resistant cells revealed that they were cross-resistant to doxorubicin and SN-38 and had alterations in apoptosis and cell-cycle profiles. Gene expression analysis identified deregulation of histone H2A and H2B genes in all four cell lines. Histone deacetylase small-molecule inhibitors reversed resistance and were cytotoxic for epirubicin-resistant cell lines, confirming that histone pathways are associated with epirubicin resistance. Gene expression of a novel 18-gene histone pathway module analysis of the BR9601 adjuvant clinical trial revealed that patients with low expression of the 18-gene histone module benefited from anthracycline treatment more than those with high expression (hazard ratio 0.35, 95 % confidence interval 0.13–0.96, p = 0.042). Conclusions This study revealed a key pathway that contributes to anthracycline resistance and established model systems for investigating drug resistance in all four major breast cancer subtypes. As the histone modification can be targeted with small-molecule inhibitors, it represents a possible means of reversing clinical anthracycline resistance. Trial registration ClinicalTrials.gov identifier NCT00003012 . Registered on 1 November 1999

    Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance

    Get PDF
    The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2–4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically ‘steer’ the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic–resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy

    Suboptimality of a decentralized feedback control law

    No full text
    In this note, a new estimating method for the upper bound of the cost of the uncertain linear system used by Trinh and Aldeen (1993) is proposed. We have also estimated the absolute cost loss and relative cost loss of this kind of optimization problem. To show the usefulness of our results a numerical example has been developed.link_to_subscribed_fulltex

    On the robustness of jump linear quadratic control

    No full text
    link_to_subscribed_fulltex
    • …
    corecore