9 research outputs found

    DNA Methylation and Demethylation Are Regulated by Functional DNA Methyltransferases and DnTET Enzymes in Diuraphis noxia

    Get PDF
    Aphids are economically important insect pests of crops worldwide. Despite resistant varieties being available, resistance is continuously challenged and eventually broken down, posing a threat to food security. In the current study, the epigenome of two related Russian wheat aphid (Diuraphis noxia, Kurdjumov) biotypes (i.e., SA1 and SAM) that differ in virulence was investigated to elucidate its role in virulence in this species. Whole genome bisulfite sequencing covered a total of 6,846,597,083 cytosine bases for SA1 and 7,397,965,699 cytosine bases for SAM, respectively, of which a total of 70,861,462 bases (SA1) and 74, 073,939 bases (SAM) were methylated, representing 1.126 ± 0.321% (SA1) and 1.105 ± 0.295% (SAM) methylation in their genomes. The sequence reads were analyzed for contexts of DNA methylation and the results revealed that RWA has methylation in all contexts (CpG, CHG and CHH), with the majority of methylation within the CpG context (± 5.19%), while the other contexts show much lower levels of methylation (CHG − ± 0.27%; CHH − ± 0.34%). The top strand was slightly (0.02%) more methylated than the bottom strand. Of the 35,493 genes that mapped, we also analyzed the contexts of methylation of each of these and found that the CpG methylation was much higher in genic regions than in intergenic regions. The CHG and CHH levels did not differ between genic and intergenic regions. The exonic regions of genes were more methylated (±0.56%) than the intronic regions. We also measured the 5mC and 5hmC levels between the aphid biotypes, and found little difference in 5mC levels between the biotypes, but much higher levels of 5hmC in the virulent SAM. RWA had two homologs of each of the DNA methyltransferases 1 (DNMT1a and DNMT1b) and DNMT3s (DNMT3a and DNMT3b), but only a single DNMT2, with only the expression of DNMT3 that differed significantly between the two RWA biotypes. RWA has a single ortholog of Ten eleven translocase (DnTET) in the genome. Feeding studies show that the more virulent RWA biotype SAM upregulate DnDNMT3 and DnTET in response to wheat expressing antibiosis and antixenosis

    Characterization and amino acid metabolism performances of indigenous Oenococcus oeni isolated from Chinese wines

    No full text
    Oenococcus oeni is a multiple physical stress-tolerant lactic acid bacterium that plays an important role in wine making. It is often added as a starter culture to carry out malolactic fermentation (MLF). In this study, a total of 22 out of 127 lactic acid bacteria, isolated from Chinese wines undergoing MLF, were identified as O. oeni by species-specific PCR and 16S rRNA sequencing. Single-enzyme amplified fragment length polymorphism (SE-AFLP) analysis showed that all strains could be typed under these conditions, and three main groups were determined by cluster analysis, which showed intraspecific homology higher than 69ïżœ %. Eight strains, representative of SE-AFLP clusters, were tested for malolactic activity. Significant differences were observed among strains with regard to the amount of malic acid consumed. Seventeen amino acids in different wines that were inoculated by 4 O. oeni strains, respectively, were analyzed before and after MLF. The results indicated that the amino acid metabolism of the 4 strains was significantly different between each strain.Gang Jin, Hua Wang, Chunhui Zhang, Cuixia Li, Liye Du, Paul R. Grbin and Hua L

    Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level

    Get PDF
    BACKGROUND: Volatile thiols largely contribute to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless, non-volatile precursors found in the berries and the must. The present study investigates the effects of vine nitrogen (N) status on 3SH and 4MSP content in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) in the berries and the must. This is paralleled by a RNA-seq analysis of gene expression in the berries. The impact of N supply on the expression of the glutathione-S-transferase 3 and 4 (VviGST3 and VviGST4) and the Îł-glutamyltranspeptidase (VviGGT), considered as key genes in their biosynthesis, was also evaluated.[br/] RESULTS: N supply (N100 treatment) increased the 3SH content in wine while no effect was noticed on 4MSP level. Furthermore, N supply increased Glut-3SH levels in grape berries at late berry ripening stages, and this effect was highly significant in must at harvest. No significant effect of N addition was noticed on Cys-3SH concentration. The transcript abundance of the glutathione-S-transferases VviGST3 and VviGST4 and the Îł-glutamyltranspeptidase (VviGGT), were similar between the control and the N100 treatment. New candidate genes which might be implicated in the biosynthetic pathway of 3SH precursors were identified by whole transcriptome shotgun sequencing (RNA-seq).[br/] CONCLUSIONS: High vine N status has a positive effect on 3SH content in wine through an increase of Glut-3SH levels in grape berries and must. Candidate GSTs and glutathione-S-conjugates type transporters involved in this stimulation were identified by RNA-seq analysis

    Implications of new research and technologies for malolactic fermentation in wine

    No full text
    The initial conversion of grape must to wine is an alcoholic fermentation (AF) largely carried out by one or more strains of yeast, typically Saccharomyces cerevisiae. After the AF, a secondary or malolactic fermentation (MLF) which is carried out by lactic acid bacteria (LAB) is often undertaken. The MLF involves the bioconversion of malic acid to lactic acid and carbon dioxide. The ability to metabolise L-malic acid is strain specific, and both individual Oenococcus oeni strains and other LAB strains vary in their ability to efficiently carry out MLF. Aside from impacts on acidity, LAB can also metabolise other precursors present in wine during fermentation and, therefore, alter the chemical composition of the wine resulting in an increased complexity of wine aroma and flavour. Recent research has focused on three main areas: enzymatic changes during MLF, safety of the final product and mechanisms of stress resistance. This review summarises the latest research and technological advances in the rapidly evolving study of MLF and investigates the directions that future research may take.Krista M. Sumby, Paul R. Grbin, Vladimir Jirane

    Importance of Yeasts and Lactic Acid Bacteria in Food Processing

    No full text
    WOS: 000357717400015

    Implications of new research and technologies for malolactic fermentation in wine

    No full text
    corecore