1,907 research outputs found
Outer planet mission analysis overview
Mission analysis work provides for off the Pioneer spacecraft probe flight schematics to Uranus, Saturn and Jupiter
A Titan exploration study: Science, technology, and mission planning options, volume 2
For abstract, see Vol.
A Titan exploration study: Science, technology and mission planning options, volume 1
Mission concepts and technology advancements that can be used in the exploration of the outer planet satellites were examined. Titan, the seventh satellite of Saturn was selected as the target of interest. Science objectives for Titan exploration were identified, and recommended science payloads for four basic mission modes were developed (orbiter, atmospheric probe, surface penetrator and lander). Trial spacecraft and mission designs were produced for the various mission modes. Using these trial designs as a base, technology excursions were then made to find solutions to the problems resulting from these conventional approaches and to uncover new science, technology and mission planning options. Several mission modes were developed that take advantage of the unique conditions expected at Titan. They include a combined orbiter, atmosphere probe and lander vehicle, a combined probe and surface penetrator configuration and concepts for advanced remote sensing orbiters
In-situ measurement of the permittivity of helium using microwave NbN resonators
By measuring the electrical transport properties of superconducting NbN
quarter-wave resonators in direct contact with a helium bath, we have
demonstrated a high-speed and spatially sensitive sensor for the permittivity
of helium. In our implementation a mm sensing volume is
measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The
minimum detectable change of the permittivity of helium is calculated to be
/Hz with a sensitivity of order
/Hz easily achievable. Potential applications
include operation as a fast, localized helium thermometer and as a transducer
in superfluid hydrodynamic experiments.Comment: 4 pages, 3 figure
Approximating Weighted Duo-Preservation in Comparative Genomics
Motivated by comparative genomics, Chen et al. [9] introduced the Maximum
Duo-preservation String Mapping (MDSM) problem in which we are given two
strings and from the same alphabet and the goal is to find a
mapping between them so as to maximize the number of duos preserved. A
duo is any two consecutive characters in a string and it is preserved in the
mapping if its two consecutive characters in are mapped to same two
consecutive characters in . The MDSM problem is known to be NP-hard and
there are approximation algorithms for this problem [3, 5, 13], but all of them
consider only the "unweighted" version of the problem in the sense that a duo
from is preserved by mapping to any same duo in regardless of their
positions in the respective strings. However, it is well-desired in comparative
genomics to find mappings that consider preserving duos that are "closer" to
each other under some distance measure [19]. In this paper, we introduce a
generalized version of the problem, called the Maximum-Weight Duo-preservation
String Mapping (MWDSM) problem that captures both duos-preservation and
duos-distance measures in the sense that mapping a duo from to each
preserved duo in has a weight, indicating the "closeness" of the two
duos. The objective of the MWDSM problem is to find a mapping so as to maximize
the total weight of preserved duos. In this paper, we give a polynomial-time
6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and
Combinatorics Conference (COCOON 2017
Activation of p34cdc2 kinase by cyclin A
Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A
- …