810 research outputs found

    Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment

    Get PDF
    The genetic modification of microalgal strains for enhanced or modified metabolic activity shows great promise for biotechnological exploitation. However, of key concern for many is the safety of GM technology and GMOs with regard to both the environment and human health, and how these concerns are met will play a key role in ensuring how successful commercialisation of GM algae is achieved. Commercialisation opportunities for GM microalgae will inevitably require translation from laboratory to industrial settings, on scales beyond those typically associated with the current biotechnology sector. Here we provide an overview of the current situation with regards to GM techniques and legislation, and the implications of large-scale cultivation with regards to developing a safe and effective risk assessment system for contained and uncontained activities. We discuss the rationale and options for modification and the implications for risks associated with scale up to human health and the environment, current grey areas in political/technical legislation, the use of contained/uncontained production systems, deliberate release and monitoring strategies. We conclude that while existing procedures are not entirely sufficient for accurate and exhaustive risk assessment, there exists a substantial knowledge base and expertise within the existing aquaculture, fermentation and (algal) biotechnology industries that can be combined and applied to ensure safe use in the future

    Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis

    Get PDF
    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in allWBDsamples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent ofWBDvia tests of Henle–Koch’s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study

    Characterisation of the bacterial and fungal communities associated with different lesion sizes of Dark Spot Syndrome occurring in the Coral Stephanocoenia intersepta

    Get PDF
    The number and prevalence of coral diseases/syndromes are increasing worldwide. Dark Spot Syndrome (DSS) afflicts numerous coral species and is widespread throughout the Caribbean, yet there are no known causal agents. In this study we aimed to characterise the microbial communities (bacteria and fungi) associated with DSS lesions affecting the coral Stephanocoenia intersepta using nonculture molecular techniques. Bacterial diversity of healthy tissues (H), those in advance of the lesion interface (apparently healthy AH), and three sizes of disease lesions (small, medium, and large) varied significantly (ANOSIM R = 0.052 p,0.001), apart from the medium and large lesions, which were similar in their community profile. Four bacteria fitted into the pattern expected from potential pathogens; namely absent from H, increasing in abundance within AH, and dominant in the lesions themselves. These included ribotypes related to Corynebacterium (KC190237), Acinetobacter (KC190251), Parvularculaceae (KC19027), and Oscillatoria (KC190271). Furthermore, two Vibrio species, a genus including many proposed coral pathogens, dominated the disease lesion and were absent from H and AH tissues, making them candidates as potential pathogens for DSS. In contrast, other members of bacteria from the same genus, such as V. harveyii were present throughout all sample types, supporting previous studies where potential coral pathogens exist in healthy tissues. Fungal diversity varied significantly as well, however the main difference between diseased and healthy tissues was the dominance of one ribotype, closely related to the plant pathogen, Rhytisma acerinum, a known causal agent of tar spot on tree leaves. As the corals’ symbiotic algae have been shown to turn to a darker pigmented state in DSS (giving rise to the syndromes name), the two most likely pathogens are R. acerinum and the bacterium Oscillatoria, which has been identified as the causal agent of the colouration in Black Band Disease, another widespread coral disease

    BAFF and MyD88 signals promote a lupuslike disease independent of T cells

    Get PDF
    Systemic lupus erythernatosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies. However, the underlying cause of disease appears to relate to defects in T cell tolerance or T cell help to 13 cells. Transgenic (Tg) mice over-expressing the cytokine 13 cell-activating factor of the tumor necrosis factor family (BAFF) develop an autoimmune disorder similar to SLE and show impaired B cell tolerance and altered T cell differentiation. We generated BAFF Tg mice that were completely deficient in T cells, and, surprisingly, these mice developed an SLE-like disease indistinguishable from that of BAFF Tg mice. Autoimmunity in BAFF Tg mice did, however, require 13 cell-intrinsic signals through the Toll-like receptor (TLR)-associated signaling adaptor MyD88, which controlled the production of proinflammatory autoantibody isotypes. TLR7/9 activation strongly up-regulated expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), which is a receptor for BAFF involved in 13 cell responses to T cell-independent antigens. Moreover, BAFF enhanced TLR7/9 expression on 13 cells and TLR-mediated production of autoantibodies. Therefore, autoirnmunity in BAFF Tg mice results from altered 13 cell tolerance, but requires TLR signaling and is independent of T cell help. It is possible that SLE patients with elevated levels of BAFF show a similar basis for disease

    Analysis of the N-terminal region of human MLKL, as well as two distinct MLKL isoforms, reveals new insights into necroptotic cell death

    Get PDF
    © 2016 Authors. The pseudokinase mixed lineage kinase domain-like (MLKL) is an essential effector of necroptotic cell death. Two distinct human MLKL isoforms have previously been reported, but their capacities to trigger cell death have not been compared directly. Herein, we examine these two MLKL isoforms, and further probe the features of the human MLKL N-terminal domain that are required for cell death. Expression in HEK293T cells of the N-terminal 201 amino acids (aa) of human MLKL is sufficient to cause cell death, whereas expression of the first 154 aa is not. Given that aa 1125 are able to initiate necroptosis, our findings indicate that the helix that follows this region restrains necroptotic activity, which is again restored in longer constructs. Furthermore, MLKL isoform 2 (MLKL2), which lacks much of the regulatory pseudokinase domain, is a much more potent inducer of cell death than MLKL isoform 1 (MLKL1) in ectopic expression studies in HEK293T cells. Modelling predicts that a C-terminal helix constrains the activity of MLKL1, but not MLKL2. Although both isoforms are expressed by human monocyte-derived macrophages at the mRNA level, MLKL2 is expressed at much lower levels. We propose that it may have a regulatory role in controlling macrophage survival, either in the steady state or in response to specific stimuli

    The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    Get PDF
    © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd. Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host-pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment

    Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    Get PDF
    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm) were assessed. Changes in bacterial diversity (16S rRNA gene), were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05) from that of the water column and from the surface mucus layer (SML) of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as factors governing change in microbial diversity

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
    corecore