12 research outputs found

    The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs

    No full text
    The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment

    European soil seed bank communities across a climate and land-cover gradient

    No full text
    This is the data set used for the publication Buffering effects of soil seed banks on plant community composition in response to land use and climate, published in the journal Global Ecology and Biogeography. Aim. Climate and land use are key determinants of biodiversity, with past and ongoing changes posing serious threats to global ecosystems. Unlike most other organism groups, plant species can possess dormant life-history stages such as soil seed banks, which may help plant communities to resist or at least postpone the detrimental impact of global changes. This study investigates the potential for soil seed banks to achieve this. Location. Europe Time period. 1978 – 2014 Major taxa studied. Flowering plants Methods. Using a space-for-time/warming approach, we study plant species richness and composition in the herb layer and the soil seed bank in 2796 community plots from 54 datasets in managed grasslands, forests and intermediate, successional habitats across a climate gradient. Results. Soil seed banks held more species than the herb layer, being compositionally similar across habitats. Species richness was lower in forests and successional habitats compared to grasslands, with annual temperature range more important than mean annual temperature for determining richness. Climate and land use effects were generally less pronounced when plant community richness included seed bank species richness, while there was no clear effect of land use and climate on compositional similarity between the seed bank and the herb layer. Main conclusions. High seed bank diversity and compositional similarity between the herb layer and seed bank plant communities may provide a potentially important functional buffer against the impact of ongoing environmental changes on plant communities. This capacity could, however, be threatened by climate warming. Dormant life-history stages can therefore be important sources of diversity in changing environments, potentially underpinning already observed time-lags in plant community responses to global change. However, as soil seed banks themselves appear, albeit less, vulnerable to the same changes, their potential to buffer change can only be temporary, and major community shifts may still be expected.,This dataset is a collection of 41 published and 5 unpublished data sets, consisting of 2796 plots with corresponding seed bank and herb layer community data. Sampling effort varied across data sets, but involved sampling of the soil and subsequent germination trials in a greenhouse to determine seed bank composition. Herb layer communities were determined by the identification of plants in relevés. Please consult the readme file and published paper for further details.,Please contact database or individual data set authors for further information and collaboration when using the data set or any of its component parts. Please also note that some of these data sets have already been published alongside their orginal papers. Finally, please cite data and datasets according to community standards.

    Refining the evolutionary tree of the horse Y chromosome

    No full text
    The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski\u27s horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity

    Convergence of soil nitrogen isotopes across global climate gradients

    No full text
    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss

    Data from: Crop pests and predators exhibit inconsistent responses to surrounding landscape composition

    No full text
    AbstractThe idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies

    Variation and correlation in the timing of breeding of North Atlantic seabirds across multiple scales

    No full text
    Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (i) shared across species at a range of spatial scales, (ii) shared across populations of a species, or (iii) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake (Rissa tridactyla) was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns (code)

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    No full text
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide
    corecore