120 research outputs found

    Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Get PDF
    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit

    On spurious steady-state solutions of explicit Runge-Kutta schemes

    Get PDF
    The bifurcation diagram associated with the logistic equation v sup n+1 = av sup n (1-v sup n) is by now well known, as is its equivalence to solving the ordinary differential equation u prime = alpha u (1-u) by the explicit Euler difference scheme. It has also been noted by Iserles that other popular difference schemes may not only exhibit period doubling and chaotic phenomena but also possess spurious fixed points. Runge-Kutta schemes applied to both the equation u prime = alpha u (1-u) and the cubic equation u prime = alpha u (1-u)(b-u) were studied computationally and analytically and their behavior was contrasted with the explicit Euler scheme. Their spurious fixed points and periodic orbits were noted. In particular, it was observed that these may appear below the linearized stability limits of the scheme and, consequently, computation may lead to erroneous results

    Global Asymptotic Behavior of Iterative Implicit Schemes

    Get PDF
    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics

    On Spurious Behavior of Super-Stable Implicit Methods

    Get PDF
    Th e objective of this paper is to gain a better understanding of the asymptotic nonlinear behavior of super-stable implicit linear multistep methods for constant time steps. Examples of the nonlinear effect caused by grid adaptation and super-stable implicit total variation diminishing (TVD) schemes on the overall performance of the numerical procedure are given. A method to minimize spurious steady-state numerical solutions is discussed

    Nonlinear dynamics and numerical uncertainties in CFD

    Get PDF
    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations

    Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations

    Get PDF
    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES

    Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. I. The Dynamics of Time Discretization and Its Implications for Algorithm Development in Computational Fluid Dynamics

    Get PDF
    The goal of this paper is to utilize the theory of nonlinear dynamics approach to investigate the possible sources of errors and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic and parabolic partial differential equations terms. This interdisciplinary research belongs to a subset of a new field of study in numerical analysis sometimes referred to as the dynamics of numerics and the numerics of dynamics. At the present time, this new interdisciplinary topic is still the property of an isolated discipline with all too little effort spent in pointing out an underlying generality that could make it adaptable to diverse fields of applications. This is the first of a series of research papers under the same topic. Our hope is to reach researchers in the fields of computational fluid dynamics (CFD) and, in particular, hypersonic and combustion related CFD. By simple examples (in which the exact solutions of the governing equations are known), the application of the apparently straightforward numerical technique to genuinely nonlinear problems can be shown to lead to incorrect or misleading results. One striking phenomenon is that with the same initial data, the continuum and its discretized counterpart can asymptotically approach different stable solutions. This behavior is especially important for employing a time-dependent approach to the steady state since the initial data are usually not known and a freest ream condition or an intelligent guess for the initial conditions is often used. With the unique property of the different dependence of the solution on initial data for the partial differential equation and the discretized counterpart, it is not easy to delineate the true physics from numerical artifacts when numerical methods are the sole source of solution procedure for the continuum. Part I concentrates on the dynamical behavior of time discretization for scalar nonlinear ordinary differential equations in order to motivate this new yet unconventional approach to algorithm development in CFD and to serve as an introduction for parts II and III of the same series of research papers

    On spurious asymptotic numerical solutions of explicit Runge Kutta methods

    Get PDF
    The bifurcation diagram associated with the logistic equation vn+1 = avn(1 - vn) is by now well known, as is its equivalence to solving the ordinary differential equation (ODE) u\u27 = αu(1 - u) by the explicit Euler difference scheme. It has also been noted by Iserles that other popular difference schemes may not only exhibit period doubling and chaotic phenomena but also possess spurious fixed points. We investigate, both analytically and computationally, Runge-Kutta schemes applied to the equation u\u27 = f(u), for f(u) = αu(1 - u) and f(u) = αu (1 - u)(b - u), contrasting their behavior with the explicit Euler scheme. We determine and provide a local analysis of bifurcations to spurious fixed points and periodic orbits. In particular we show that these may appear below the linearised stability limit of the scheme, and may consequently lead to erroneous computational results

    ON SPURIOUS BEHAVIOR OF CFD SIMULATIONS

    Get PDF
    Spurious behavior in underresolved grids and:or semi-implicit temporal discretizations for four computational fluid dynamics (CFD) simulations are studied. The numerical simulations consist of (a) a 1-D chemically relaxed non-equilibrium flow model, (b) the direct numerical simulation (DNS) of 2D incompressible flow over a backward facing step, (c) a loosely coupled approach for a 2D fluid–structure interaction, and (d) a 3D unsteady compressible flow simulation of vortex breakdown on delta wings. These examples were chosen based on their non-apparent spurious behaviors that were difficult to detect without extensive grid and:or temporal refinement studies and without some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations, underresolved grids, semi-implicit procedures, loosely coupled implicit procedures, and insufficiently long-time integration in DNS are most often unavoidable. Consequently, care must be taken in both computation and in interpretation of the numerical data. The results presented confirm the important role that dynamical systems theory can play in the understanding of the non-linear behavior of numerical algorithms and in aiding the identification of the sources of numerical uncertainties in CFD

    A Finite-Volume Method for Convection Problems with Embedded Moving-Boundaries

    Full text link
    htmlabstractAn accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. Moving interior boundary conditions are embedded in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters are derived such that the resulting scheme is monotone. The results obtained are very accurate, without requiring much computational overhead. It is anticipated that the method can readily be extended to real fluid-flow equations
    • …
    corecore