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The global asymptotic nonlinear behavior of some standard iterative procedures in solving
nonlinear systems of algebraic equations arising from four implicit linear multistep methods

(LMMs) in discretizing three models of 2 × 2 systems of first-order autonomous nonlinear

ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The
iterative procedures include simple iteration and full and modified Newton iterations. The

results are compared with standard Runge-Kutta explicit methods, a noniterative implicit

procedure, and the Newton method of solving the steady part of the ODEs. Studies showed
that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the

type and stability of the steady states of the differential equations (DEs). They also exhibit a
drastic distortion but less shrinkage of the basin of attraction of the true solution than standard

nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar

to standard nonLMM explicit methods except that spurious steady-state numerical solutions
cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic

more closely the basins of attraction of the DEs and are more efficient than the three iterative

implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data

using the Newton method of solving the steady part of the DEs may not have to be close to the

exact steady state for convergence. These results can be used as an explanation for possible
causes and cures of slow convergence and nonconvergence of steady-state numerical solutions

when using an implicit LMM time-dependent approach in computational fluid dynamics.

1. Background and Objective

It has been shown recently by the authors and

others [Yee et al., 1991; Yee & Sweby, 1992;

Lafon & Yee, 1991; Lafon & Yee, 1992; Griffiths

et al., 1992a,b; Sweby & Yee, 1991; Yee et al.,

1992; Mitchell & Griffiths, 1985; Iserles, 1988;

Iserles et al., 1990; Stuart, 1989; Dieci & Estep,

1990] that the dynamics of the numerical dis-

cretizations of nonlinear differential equations

(DEs) can differ significantly from that of the

original DEs themselves. For example, it was shown

in Yee et al. [1991], Yee & Sweby [1992], and Lafon

& Yee [1991, 1992] that the discretizations can pos-

sess spurious steady-state numerical solutions and

*Written version of the paper presented at the SIAM Conference on Applications of Dynamical Systems, October 15-19, 1992,
Salt Lake City, Utah; a condensed version will appear in the Proceedings of the Chaotic Numerics Workshop, July 12-16,
1993, Deakin University, Geelong, Australia.
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spurious asymptotes which do not satisfy the orig-

inal DEs. These spurious numerical solutions may

be stable or unstable and may occur both below and

above the linearized stability limit of the numer-

ical scheme (on the time step for the equilibrium

or asymptote of the DE). In Yee & Sweby [1992],

Lafon & Yee [1991], Sweby & Yee [1991], and Yee
et al. [1992a] we showed how "numerical" basins

of attraction can complement the bifurcation dia-

grams in obtaining the global asymptotic behav-
ior of numerical solutions for nonlinear DEs. We

showed how in the presence of spurious asymptotes

the basins of the true stable steady states could be

altered by the basins of the spurious stable and un-

stable asymptotes. One major consequence of this
phenomenon which is not commonly known is that

this spurious behavior can result in a dramatic dis-

tortion and, in most cases, a dramatic shrinkage
and segmentation of the basin of attraction of the

true solution for finite time steps. Such distortion,

shrinkage, and segmentation of the numerical basins

of attraction will occur regardless of the stability of

the spurious asymptotes.

We use the term "spurious asymptotic numer-
ical solutions" to mean asymptotic solutions that

satisfy the discretized counterparts but do not sat-

isfy the underlying ordinary differential equations

(ODEs) or partial differential equations (PDEs). In
other words, asymptotic solutions that are asymp-

totes of the discretized counterparts but are not

asymptotes of the DEs. Asymptotic solutions here

include steady-state solutions, periodic solutions,
limit cycles, chaos, and strange attractors. Here,
the basin of attraction is a domain of a set of ini-

tial conditions whose solution curves (trajectories)
all approach the same asymptotic state. Also, we
use the term "exact" and "numerical" basins of at-

traction to distinguish "basins of attraction of the

underlying DEs" and "basins of attraction of the
discretized counterparts".

In view of the above nonlinear behavior of nu-

merical schemes, it is possible that numerical com-

putations may converge to an incorrect steady state

or other asymptotes which appear to be physically

reasonable. One major implication is that what is

expected to be physical initial data associated with

a true steady state might lead to a wrong steady
state, a spurious asymptote, or a divergence or non-

convergence of the numerical solution. In addition,

the existence of spurious limit cycles [Yee et al.,

1992; Yee et al., 1991; Yee & Sweby_ 1992] may re-
sult in the type of nonconvergence of steady-state

numerical solutions observed in time-dependent

approaches to the steady states. It is our belief

that the understanding of the symbiotic relation-
ship between the strong dependence on initial data

and permissibility of spurious stable and unstable

asymptotic numerical solutions at the fundamental

level can guide the tuning of the numerical param-

eters and the proper and/or efficient usage of nu-

merical algorithms in a more systematic fashion. It

can also explain why certain schemes behave nonlin-

early in one way but not another. Here, strong de-
pendence on initial data means that for a finite time

step At that is not sufficiently small, the asymptotic
numerical solutions and the associated numerical

basins of attraction depend continuously on the ini-

tial data. Unlike nonlinear problems, the associated

numerical basins of attraction of linear problems are

independent of At as long as At is below a certain

upper bound.

Studies in Yee et al. [1991], Yee & Sweby [1992],

Lafon & Yee [1991, 1992], Griffiths et al. [1992a,b],

Sweby & Yee [1991], Yee et al. [1992], Mitchell &

Griffiths [1985], Iserles [1988], Iserles et al. [1990],

Stuart [1989], and Dieci & Estep [1990] are par-
ticularly important for computational fluid dynam-

ics (CFD), since it is a common practice in CFD

computations to use a time-dependent approach to

obtain steady-state numerical solutions of compli-
cated steady fluid flows which often consist of stiff

nonlinear PDEs of the mixed type. When a time-

dependent approach is used to obtain steady-state

numerical solutions of a fluid flow or a steady PDE,
a boundary value problem is transformed into an

initial-boundary value problem with unknown ini-

tial data. If the steady PDE is strongly nonlinear

and/or contains stiff nonlinear source terms, phe-

nomena such as slow convergence, nonconvergence

or spurious steady-state numerical solutions com-

monly occur even though the time step is well below
the linearized stability limit and the initial data are

physically relevant.

It is also a common practice in CFD to use im-

plicit methods to solve stiff problems. Such schemes,

however, introduce the added difficulty of solving

the implicit equations (nonlinear algebraic equa-

tions) in order to obtain the solution at the next
time level. Various options such as linearization or

iteration are available for this purpose. In Yee &

Sweby [1992], we included a study on the dynamics

of a noniterative linearized version of the implicit

Euler and trapezoidal methods. In this work we

generalize our earlier work [Yee & Sweby, 1992] to
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include iterative solution procedures of the implicit
discretized equations, namely, simple iteration and
full and modified Newton iteration. In addition, we

also study the 3-level backward differentiation for-

mula (BDF) and a midpoint implicit method (one-

legged method of the trapezoidal method) with

these four methods (noniterative versus iterative) of

solving the resulting nonlinear algebraic equations

applied to it. A comparison of the above combina-
tion of implicit methods with the nine explicit meth-

ods studied in Yee & Sweby [1992], and with the

"straight" Newton method in solving the steady

part of the equations, is also performed. We use

the term "straight Newton" to distinguish it from

the combination of "implicit LMM + Newton" type

of solution procedure. Some study on variable time

step control to avoid spurious asymptotes will also
be addressed. A condensed version of this work

will appear in Yee & Sweby [1993]. Generaliza-

tion of the study to include grid adaptation as one

of the sources of nonlinearity and/or stiffness that
is introduced into the discretized system will be

reported in Sweby & Yee [1994] and Buddet al.

[19941.

2. Relevance and Outline

Since all four implicit methods under consideration

are linear multistep methods (LMMs) they will not

exhibit spurious steady states (fixed points of order

one). However, as discussed in Yee & Sweby [1992]
and as we shall see in later sections, some implicit

LMMs have the property of increasing the stability

range for the stable fixed points of the ODE [Dieci

& Estep, 1990], accompanied in some instances by
the stabilization of unstable fixed points of the ODE

[Yee & Sweby, 1992]. In addition, the method of so-

lution of the implicit equations generated by these
schemes can itself contribute to the dynamics of
the discretization since different numerical methods

and/or solution procedures result in entirely differ-
ent nonlinear discrete maps. Iserles [1988] and Dieci

& Estep [1990] were the first to examine some of the

stability issues. Our attempt here is to address is-
sues that were not investigated in Iserles [1988] and

Dieci & Estep [1990], and in our companion paper

[Yee & Sweby, 1992]. Our main purpose is to study
the global asymptotic behavior in terms of bifurca-

tion diagrams and numerical basins of attraction of

these four procedures for solving nonlinear systems

of algebraic equations arising from implicit LMM
discretizations.

Although we purposely selected the model equa-
tions with known analytical solutions, depending on

the scheme, the dynamics of their discretized coun-

terpart are very difficult and might not be possi-

ble to analyze analytically. Only some analysis is

possible. Part of the global asymptotic numerical

solution behavior can be obtained by the pseudo

arclength continuation method devised by Keller

[1977], a standard numerical method for obtaining
bifurcation curves in bifurcation analysis. Besides

not being able to provide the numerical basins of
attraction, one deficiency of the pseudo arclength

continuation method is that, for problems with

complicated bifurcation patterns, it cannot pro-

vide the complete bifurcation diagram without a
known solution for each of the main bifurcation

branches. For spurious asymptotes it is usually not

easy to locate even just one solution on each of these
branches. For the majority of the cases where rig-

orous analysis is impractical, we utilized numeri-

cal experiments. Also, analytical representations

(except in isolated cases) for numerical basins of
attraction rarely exist for nonlinear DEs. Methods

such as generalized cell mapping [Hsu et al., 1982;
Flashner & Guttalu, 1988] can provide an efficient

approach to locating these basins, but might not be

exact. Here, our aim is to numerically compute the

basins of attraction as accurately as possible and in

the most straightforward way in order to illustrate

the key points.

Due to the complicated nature of these dis-

crete maps, analysis without a supercomputer is

nearly impossible. The nature of our studies re-

quires the performance of a very large number of
simulations with different initial data; this can be

achieved by use of the highly parallel Connection

Machines (CM-2 or CM-5) whereby each processor
could represent a single initial datum and thereby

all the computations can be done in parallel to pro-

duce detailed global stability behavior and the re-

sulting basins of attraction. With the aid of highly

parallel Connection Machines, we were able to de-
tect a wealth of the detailed nonlinear behavior of

these schemes which would have been overlooked

had isolated initial data been chosen on the Cray-
YMP or other serial or vector machine.

Outline:

The outline of this paper is as follows. Section 3

reviews background material. Section 4 describes

the three 2 × 2 systems of nonlinear first-order au-
tonomous model ODEs. Section 5 describes the
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four implicit LMM time discretizations and the four

commonly used noniterative and iterative proce-

dures in solving the resulting nonlinear algebraic
equations. Section 6 discusses the combined bifur-

cation diagrams and numerical basins of attraction
of the underlying schemes for the three model equa-

tions. This section also includes the result of using

straight Newton method to solve the steady part
of the ODE du = S(U) (i.e., solving for the solu-

tions of S(U) = 0). Due to the complexity of the

subject matter most of our study used a fixed time

step. A brief discussion on variable step size con-
trol will be included. The paper ends with a sum-

mary and a discussion of the implications of the
numerical studies in Sec. 7. Our studies reveal that

unconditionally stable LMMs perform better than

standard explicit methods and that noniterative im-

plicit schemes are more efficient and mimic more

closely the true behavior of the governing equations

than the iterative implicit procedure for all of the
four studied implicit LMMs. Studies further show

that standard variable time step control, although

performing better with very restricted time steps

than the constant time step case, did not allevi-

ate completely the occurrence of spurious numerical

asymptotes.

3. Preliminaries

Consider a 2 x 2 system cf first-order autonomous
nonlinear ODEs of the form

dU

dt S(U) (3.1)

where U and S are vector functions of dimension 2,

and S(U) is nonlinear in U. A fixed point (steady
state) UE of an autonomous system (3.1) is a con-

stant solution of (3.1); that is

S(UE) -- 0, (3.2)

where the subscript "E" stands for "exact" and UE

denotes the fixed points of the ODE as opposed to

the additional fixed points of the discretized coun-

terparts (spurious fixed points) due to the numerical
methods which we will encounter later.

Consider a nonlinear discrete map from a finite

discretization of (3.1)

U n+l = U n + D(U n, At), (3.3)

where At is the time step and D(U n, At) is

linear or nonlinear in At depending on the nu-

merical method. A fixed point U of (3.3) is defined
byU _+1 =U n,or

m

U = U + D(U, At) (3.4a)

or
m

D(U, At) = 0. (3.4b)

a

A fixed point U of period p > 0 of (3.3) is defined

by U '_+p = U n where U '_+k ¢ U n for k < p. In the

context of discrete systems, the term "fixed point"

without indicating the period means "fixed point of

period 1" or the steady-state solution of (3.3). Here,

we use the term asymptote to mean a fixed point of

any period, a limit cycle (invariant set), chaos, or a

strange attractor.

The type of finite discretization of (3.1) repre-

sented in (3.3) assumed the use of two-time level

schemes. Otherwise the vector dimension of (3.3)

would be 2(k - 1) instead of 2 where k is the num-
ber of the time level of the scheme. Here, the vec-
tor function D is assumed to be consistent with the

ODE (3.1) in the sense that fixed points of the ODE

are fixed points of the scheme; however, the re-

verse need not hold. Also, spurious asymptotes that

are asymptotic numerical solutions of (3.3) but not

(3.1) can exist, depending on the numerical method

and At. It is these features, accompanied by other

added dynamics, that cause the discretized coun-
terparts of the underlying ODE to possess a much

richer dynamical behavior than the original ODE

which forms the core of this study. Thus, the fixed

points U of D(U, At) = 0 may be true fixed points

UE of (3.1) or spurious fixed points Us. The spuri-

ous fixed points Us are not roots of S(U) = O. That

is, S(Vs) :/: O.

Letting U n = U+6 n, then a perturbation anal-

ysis on (3.3) by discarding terms of 0(5 2) yields

OD(U, At)) n+160 (3.5)5n+1 = I + OU ] "

Assuming _ _ 0, then the fixed point U is

stable if the eigenvalues of I+ _ lie inside the
unit circle. If both eigenvalues are real and both

lie inside (outside) the unit circle, then the fixed

point is a stable (unstable) node. If one is inside

the unit circle and the other outside, then the fixed

point is a saddle. If both eigenvalues are complex,
then the fixed point is a spiral. If the eigenvalues

lie on the unit circle, then the fixed point of (3.3)
is indeterminant and additional analysis is required
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to determine the true behavior of (3.3) around this

type of fixed point. For a more refined definition

and the difference in fixed point definition between

ODEs and discrete maps, see Guckenheimer &

Holmes [1983] and Hale & Kocak [1991] and ref-
erences cited therein.

An important feature which can arise (for both

systems of ODEs (3.1) and their discretizations)
as the result of a Hopf bifurcation is a limit

cycle where the trajectory traverses a closed curve

in phase space. In all but a few simple cases, such

limit cycles are beyond analysis. It is possible that

the ODEs posses no limit cycle, but depending

on the numerical methods, spurious limit cycles

can be present for the discretized counterparts.

It is this phenomena that can contribute to the

nonconvergence of numerical schemes in time-
dependent approaches to the steady states.

4. Model Nonlinear First-Order
Autonomous ODEs

Three of the four 2 × 2 systems of nonlinear first-
order autonomous model ODEs considered in Yee

& Sweby [1992] are considered here. As before, we
do not treat any system parameter present in the
DEs as a bifurcation parameter, but instead keep it

constant throughout each numerical calculation so

that only the discretization parameters come into

play. The systems considered with U T = (u, v) or

z = u + iv are a

1. Dissipative complex model:

dz = z(i + _ - [z[2) ;
dt

(4.1)

The perturbed Hamiltonian model can be re-

lated to the numerical solution of the viscous Burg-

ers' equation with no source term:

Ou 10(u 2) 02u
O---t+ 20x - 3 0x---_ 3 > 0. (4.4)

Let uj(t) represent an approximation to u(xj, t)

of (4.4) where xj = jAx, j = 1,..., J, with Ax

the uniform grid spacing. Consider the three-point

central difference spatial discretization with peri-
J

odic condition uj+j = uj, and assume _j=l uj =

constant, which implies that _j=lJ d__dt= 0. If we

take J = 3 and Ax = 1/3, then, with _ = 9j3

this system can be reduced to the 2 × 2 system of

first-order nonlinear autonomous ODEs (4.3) with

U T = (Ul, u2) = (u, v). In this case, the nonlinear

convection term is contributing to the nonlinearity

of the ODE system (4.3).

These three equations were selected to bring

out the dynamics of numerics for three different

types of solution behavior of the nonlinear ODEs.

The dissipative complex system (4.1) possesses el-

ther a unique stable fixed point or limit cycle with

an unstable fixed point depending on the value of

c. This is the rare situation where the analyti-

cal expression of a limit cycle can be found. The

predator-prey model (4.2) exhibits multiple stable

fixed points. The perturbed Hamiltonian model

(4.3), which arises as a gross simplification of the fi-

nite discretization of the viscous Burgers' equation,

exhibits a unique stable fixed point. Following the

classification of fixed points of (3.1) in Sec. 3, one

can easily obtain the following:

2. Predator-Prey model:

du = -3u + 4u 2 - 0.5uv - u 3
dt

dv
-- 2.1v + uv;

dt

(4.2)

3. Perturbed Hamiltonian system model:

du =c(1-3u)+ 3[ u2 ]d-t _ 1 - 2u + - 2v(1 - u)

(4.3)

dv 3[ v2 ]_-=_(1-3v)-_ 1-2v+ -2u(1-v) .

Here, _ is the system parameter for (4.1) and (4.3).

Fixed Points of (4.1):

The dissipative complex model has a unique fixed

point at (u,v) = (0,0) fore_< 0. The fixed point

is a stable spiral if _ < 0 and a center if c = 0.

For _ > 0, the fixed point (0,0) becomes unstable

with the birth of a stable limit cycle with radius

equal to x/_ centered at (0,0). Figure 4.1 shows

the phase portrait (u-v plane) of system (4.1) for

= -1 and _ = 1, respectively. Here, the entire

(u, v) plane belongs to the basins of attraction of

the stable fixed point (0, 0) if v < 0. On the other

hand, if _ > 0, the entire (u, v) plane except the

unstable fixed point (0, 0) belongs to the basins of

attraction of the stable limit cycle.
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Fig. 4.1. The phase portrait (u-v plane) of system (4.1) for e = -1 and e = 1, respectively.

Phase Portrait & Basins of Attraction

Predator-Prey Equation

Fig. 4.2. The phase portrait and their corresponding basins

of attraction for system (4.2).

Fixed Points of (4.2):

The predator-prey equation has four fixed points

(0,0), (1, 0), (3, 0), and (2.1, 1.98). By looking at

the eigenvalues of the Jacobian of S, one finds that

(0, 0) is a stable node, (2.1, 1.98) is a stable spiral,

and (1,0) and (3,0) are saddles. Figure 4.2 shows
the phase portrait and their corresponding basins

of attraction for system (4.2). The different shades

of grey regions represent the various basins of

attraction of the respective stable fixed points.

The white region represents the basin of divergent

solutions. Note that the trajectories near the un-
stable separatrices actually do not merge with the

unstable branch of separatrices, but only appear

to merge due to the thick drawings of the solution

trajectories.

Fixed Points of (4.3):

The perturbed Hamiltonian (semidiscrete system of

the viscous Burgers' equation with three-point cen-

tral difference in space) has four steady-state solu-
tions of which three are saddles and one is a sta-

ble spiral at (1/3, 1/3) for c > 0. For _ = 0, the

stable spiral becomes a center. Figure 4.3 shows
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Phase Portraits & Basins of Attraction

Viscous Burger's Equation (Central Difference in Space)

1 2 3

Fig. 4.3. The phase portrait and their corresponding basins of attraction for system (4.3).

the phase portrait and their corresponding basins

of attraction for system (4.3). The shaded region

represents the basins of attraction for the fixed

point (1/3, 1/3) for ¢ = 0 and c = 0.1. The white
region represents the basin of divergent solutions.

From here on we refer to (4.3) also as a viscous

Burgers' equation with central difference in space.

5. Numerical Methods

The four LMMs for (3.1) considered here are

1. Implicit Euler method

U n+l = U n + AtS _+_ ; (5.1)

2. Trapezoidal method

= U n + 2At(S n + Sn+l) ; (5.2)un+l

3. 3-Level backward differentiation

formula (BDF)

un+l : un...]-_tsn+l @_(un-un-1); (5.3)

4. Mid-point implicit method (one-legged

trapezoidal)

un+I = un + AtS[2 (un+I + un)] . (5.4)

Performing standard perturbation analysis on the

above equations at the fixed points U of the ODE

system by writing U n = U + 5_ where S(U) = 0
and discarding terms of 0(5 2) yields

_n+l ---- g(-_)_n (5.5)

where the matrix K(U) is defined implicitly for the

3-level BDF method. The stability of the pertur-

bation is therefore governed by the eigenvalues # of

the matrix K(U).

For the implicit Euler method we find that

g(_) = [I - Ata(U)] -1 , (5.6)

where J(U) is the Jacobian dS/dU evaluated at the

fixed point, while for the trapezoidal and midpoint

implicit methods
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and for the 3-level BDF method we have the re-

lationship

lI
[I- _AtJ(-U)]K(U) 2 - _K(-0) + 3 =0 (5.8)

Thus, if the eigenvalues of J(U) are A, we have the

eigenvalues # of K(U) as follows:

1

Implicit Euler #-l-AtA' (5.9a)

Trapezoidal & 2+AtA (5.9b)
Midpoint Implicit #- 2 - AtA '

1

3-level BDF #= 2 T x/l+2AtA ' (5.9c)

with both matrices sharing the same eigenvectors.

(Note that since the expression (5.8) is a quadratic

in K(U) there are four possible modes correspond-

ing to the different eigenvalues A and the two pos-
sible signs of the square root. However, it is the

modes taking the negative square root which have

larger modulus and therefore govern stability of the

perturbation.)
The stability of the corresponding fixed points

based on the eigenvalues of K(U) can be determined

exactly and were used to check our numerical com-

putations later. They are summarized in Table 1.

When numerically computing the full discretized

equations there are various options which can be

used to solve Eqs. (5.1), (5.2), or (5.3). We consider

here linearization (a noniterative procedure [Yee &

Sweby, 1992]), simple iteration, Newton iteration,
and modified Newton iteration.

Linearization is achieved by expanding S '_+1

as S n + J(Un)(U n+l - Un). Thus, the linearized

implicit Euler method is

V n+l = V n + At[I - AtJ(Un)]-Is n , (5.10)

the Linearized Trapezoidal method (and also the

linearized midpoint implicit method) is

U '_+1 -- U n + At I - (5.11)

and the Linearized 3-level BDF method is

U n+l =U n+ I- AtJ(U n)

× [_AtS'_+I(un-u_-I)I. (5.12)

Note that all three have possible singularities.

Straightforward perturbation analysis shows

that while the matrices K(U) for the perturbed

form of the implicit scheme differ from the fully

implicit schemes, their eigenvalues are the same.

Note, however, that the dynamics away from the

fixed points need not be identical since the per-
turbation analysis represents only the local behav-

ior of hypberbolic fixed points of the unperturbed

systems.

Simple Iteration is the process in which,

given a scheme of the form

U n+' = G(U n, Un+l), (5.13)

we perform the iteration

U_+11) = G(U _, U_-_') v = 1,... (5.14)

where U_ +1 = U '_ and "(v)" indicates the iteration
index. The iteration is continued either until some

tolerance between iterates is achieved, i.e.,

IIU_+11)- U(_lll < tol (5.15)

or a limiting number of iterations, in our case 15,

have been performed. The major drawback with

simple iteration is that for guaranteed convergence
the iteration must be a contraction, i.e.,

IIG(U",v) - G(U", W)ll  llV - Wll, (5.16)

where a < 1. Whether or not the iteration is a con-

traction at the fixed points will influence the stabil-

ity of that fixed point, overriding the stability of the
implicit scheme. Away from the fixed points the in-
fluence will be on the basins of attraction. For the

four LMMs at the fixed points this translates as
follows:

Implicit Euler AtllJ(U)ll__ <l, (5.17a)

Trapezoidal & _AtllJ(U)ll<o_<l (5.17b)Midpoint Implicit - '

3-level BDF _At{Ig(U)ll_<a<l. (5.17c)

As we shall see in Secs. 6 and 7, our numerica![
results illustrate this limitation well.

Newton Iteration for the implicit schemes is
of the form

U(n+l = rrn+l _ F,(U n, Un+l_-I
u+l) '_(v) (v) ]

× F(U n, U n+l_ (5.18)(_,) J,
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Table 1. Stability of the fixed points of the perturbed discretized equations.

System/Fixed Point Exact Implicit Euler Trap BDF

Dissipative Complex

(0, 0)_ < 0

(0, O)_ > 0

SS SS SS Stable

/ \2E

US US _0, 1---_2) US Unstable (0,?)

SS --------_, oc Stable (?, oo)

Predator Prey

(o, o) SN

(1, 0) S

(3, 0) S

(2.1, 1.98) SS

Perturbed Hamiltonian

(3, _>0 SS

SN SN Stable

S (0, 1) S Unstable (0, 2)

SN (1, co) S Stable (2, co)

S (0, 2 ) S Unstable (0,5)

SN (0-_,oo) Stable (0.--_,oo)

SS SS Stable

SS SS Stable

Key: SN -- Stable Node, SS -- Stable Spiral, US -- Unstable Spiral, S -- Saddle, Trap -- trapezoidal,

= • + V'_ + 4. Stable/Unstable indicates that type could not be determined. Intervals indicate ranges of

At if not (0, _o).

where U_ +1 = U n. The differentiation is with re-
spect to the second argument and the scheme has
been written in the form (for two-time level

schemes)

F(U n, U n+l) = 0. (5.19)

Modified Newton Iteration is the same as (5.18)

except it uses a frozen Jacobian FI(U n, Un). The
same tolerance and maximum number of itera-

tions used for the simple iteration are also used
for the Newton and modified Newton iterations. In

all of the computations, the starting scheme for the
3-level BDF is the linearized implicit Euler.

We also considered two variable time step con-

trol methods. The first one is "implicit Euler +
Newton iteration with Local Truncation Error Con-

= U n ,

= U "+l [l Atr_jrU "+x_l-1(_,) + - _ (_) JJ

I'/'Tn+l _ U n Atn,_,q{un+l_l
x t'-'(.) - _ 04 Jl

trol" [Dieci & Estep, 1990]

v(n+l
0)

un+l
(_+l)

(5.20a)

with

At n = 0.9At n-1

i toll× HUn_Un_I_At,_IS(U,_)H, (5.20b)

where the (n + 1)th step is rejected if HUn-

U n-1 - Atn-Is(u")[I > 2toll. In this case, we set
At n-1 = At". The value "toll" is a prescribed tol-

erance and the norm is an infinity norm. The second

one is the popular "ode23" method

k_ = S(U") ,

k2 = S(U n + Atnkl) ,

k3 = S(U" + Atn(ki + k2)/4), (5.21a)

U n+l = U n + At"(kl + k2 + 4k3)/6,

AU =+1 = Atn(kl + k2 - 2k3)/3,

with

i tolx (5.21b)At" = 0.9At n-1 IlzXU"ll'



1588 H. C. Yee $z P. K. Sweby

where the (n + 1)th step is rejected if IIAUn+all>

toll max{i, I[Un+lll}. In that case, we set At n-i =

At'L Again, "tOll" is a prescribed tolerance and the

norms are infinity norms.

We also employ "straight" Newton's method

in solving for the solutions of S(U) = 0 which is

the one-step Newton iteration of the implicit Euler

method of (5.18).

6. Numerical Results

As mentioned before, the nature of our calculations

requires thousands of iterations of the same equa-

tion with different ranges of initial data on a pres-

elected (u, v) domain and ranges of the discretized
parameter space At. The NASA Ames CM-2 and

CM-5 allow vast numbers (typically 65,536) of cal-

culations to be performed in parallel and is ideal
for our studies. Two different representations of the

numerical basins of attraction are computed on the

Connection Machines. One is bifurcation diagrams
as a function of At with numerical basins of attrac-

tion superimposed on a constant v- or u-plane. The
other is the numerical basins of attraction with the

stable asymptotes superimposed on the phase plane

(u, v) with selected values of At.

To obtain a bifurcation diagram with numeri-
cal basins of attraction superimposed on the CM-2

or CM-5, the preselected domain of initial data on

a constant v- or u-plane and the preselected range

of the At parameter are divided into 512 equal in-

crements. For the bifurcation part of the compu-
tations, with each initial datum and At, the dis-

cretized equations are preiterated 5,000-9,000 steps

before the next 6,000 iterations (more or less de-

pending on the problem and scheme) are plotted.

The preiterations are necessary in order for the so-

lutions to settle to their asymptotic value. A high

number of iterations are overlaid Oll the same plot

in order to detect periodic orbits or invariant sets.
The reader is reminded that with this method of

computing the bifurcation diagrams, only the sta-

ble branches are obtained. While computing the

bifurcation diagrams it is possible to overlay basins
of attraction for each value of At used. For the

basins of attraction part of the computations with

each value of At used, we keep track of where each

initial datum asymptotically approaches and color

code them (as a vertical strip) according to the

individual asymptotes. While efforts were made

to match color coding of adjacent strips on the

bifurcation diagram, it was not always practical or

possible. Care must, therefore, be taken when in-

terpreting these overlays. See Secs. 6.1 and 6.2 for
discussions.

For the basins of attraction on the phase plane

(u, v) with selected values of At and the stable

asymptotes superimposed, the (u, v) domain is di-

vided into 512 x 512 points of initial datum. With

each initial datum and At, we preiterate the re-

spective discretized equation 5,000-9,000 steps and

plot the next 6,000 steps to produce the asymp-

totes (fixed points of various order and limit cy-

cles). Again, for the basins of attraction part of the

computations, for each value of At used, we keep

track of where each initial datum asymptotically

approaches and color code them according to the

individual asymptotes. Details of the techniques

used for detection of asymptotes and basins of at-

traction are given in the appendix of Sweby & Yee

[1991]. Note that in all of the plots, if color printing

is not available, the different shades of gray repre-
sent different colors.

Selected results for both representations of nu-

merical basins of attraction are shown in Figs. 6.1-

6.33. In the plots, r = At. The "r=aDt" label
denotes a scaling parameter "a" (set to unity for

calculations presented here) times the time step At.
White dots and white curves on the basins of attrac-

tion with bifurcation diagrams superimposed repre-
sent the bifurcation curves. White dots and white

closed curves on the basins of attraction with the

numerical asymptotes superimposed represent the

stable fixed points, stable periodic solutions, or sta-

ble limit cycles. The black regions represent diver-

gent solutions.

Note that the preselected regions of At and the

selected At for the phase diagrams for both rep-
resentations of numerical basins of attraction were

determined by examining a wide range of At. In

most cases, we examined At from close to zero up

to one million. What are shown in Figs. 6.1-6.33

represent some of the At ranges that are most in-

teresting. Note also that for all of these models,

using At = 0.1 is approximately 1/10 (or less) the

time step limit of standard explicit methods [Yee &

Sweby, 1992].

The streaks on some of the plots are either

due to the nonsettling of the solutions within the

prescribed number of iterations or the existence of

small isolated spurious asymptotes. Due to the high

cost of computation, no further attempts were made
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to refine their detailed behavior since our purpose

was to show how, in general, the different numer-
ical methods behave in the context of nonlinear

dynamics. From our numerical studies, the mid-

point implicit method (linearized or iterative meth-

ods) behaves the same as, or very similarly to, the

trapezoidal method for the three models. Thus,

no figures will be shown of the midpoint implicit

method. In general, the dynamics of implicit LMMs

are very different from the dynamics of standard ex-

plicit methods. See reference [Yee &: Sweby, 1992]

for the dynamics of nine explicit methods.

6.1. Numerical results for the

dissipative complex equation

Figures 6.1-6.10 show selected results for the two

representations of numerical basins of attraction for

model (4.1) for e = 1. The exact solution for (4.1)

with _ = 1 is a stable limit cycle with unit radius

centered at (0,0). The "exact" basin of attraction
for the limit cycle is the entire (u, v) plane except

the unstable fixed point (0, 0).

Figures 6.1-6.3 compare the noniterative with

the iterative procedures for solving the nonlinear

algebraic equations using implicit Euler, trape-

zoidal, and 3-level BDF methods. Figures 6.4-6.10
show selected results of the stable numerical asymp-

totes with basins of attraction superimposed us-

ing four different At by the three implicit LMMs.

The red regions are the numerical basins of attrac-
tion for the stable limit cycle except in Fig. 6.5

(At = 2.65), in Fig. 6.6 (At = 1.5, 2, 4), in Fig. 6.8

(At = 1.5), in Fig. 6.9 (At = 2, 2.5, 4), and in

Fig. 6.10 (At = 1.515, 2.5). The green regions

shown in Figs. 6.1 and 6.3-6.5 are the numerical
basins of attraction for the stabilized fixed point

(0, 0). Note how the implicit method turns the un-
stable fixed point (0, 0) of the ODE system into a

stable one for At >__1.

To aid in the understanding of some of the re-

sults shown in Figs. 6.4-6.10, the following gives

some explanation on how to interpret the basins

of attraction diagrams with the stable numerical

asymptotes superimposed. All of the selected time

steps At shown in Figs. 6.4-6.10 are based on

Figs. 6.1-6.3 where the bifurcation diagrams with
the basins of attraction are superimposed. These

time steps were chosen to illustrate selected features
of the different bifurcation phenomena on the (u, v)

plane.

For example, it is easier to understand Fig. 6.8

(At = 1.5) using "trapezoidal + modified Newton"

if we look at the fourth plot in Fig. 6.2. Figure 6.2

shows that the original limit cycle bifurcates into

a "period 2 type" limit cycle near At = 1.25. Fig-
ure 6.2 shows distinctively that both rings share the

same basin (only one distinct solid red basin of at-

traction). The lack of a solid basin of attraction

in the third plot of Fig. 6.8 is due to the coloring

algorithm, which requires a repetition of the limit

cycle within the time of integration in order to dis-

tinguish basins of attraction. When this repetition

is not present the resulting coloring gives a crude

indication of trajectories. Additional preiteration

steps (many more than 9,000) would likely alleviate

the problem. Note that we need all of the trajecto-

ries corresponding to the 512 × 512 initial data to
settle to within the prescribed preiterations before

a solid basin results. The fourth plot of Fig. 6.8 to-

gether with Fig. 6.2 hints at a rapid period doubling

transition to instability.

Figure 6.9 for At = 2 illustrates failure of the

coloring algorithm to detect the basin of attraction
due to an insufficient number of preiterations. The

result is again a crude indication of the trajectories.

Even though not correctly colored, the non-black

region gives the size of the basin. Also, the third

plot of Fig. 6.3 gives a clear indication of the size of
the corresponding numerical basin of attraction for
At = 2.

Figure 6.10 for At = 1.515 illustrates the sur-

prising presence of an embedded region of instabil-

ity within the basin of attraction of the limit cycle

(see also Fig. 6.3). The lack of a distinct (single red

colored) basin is again an artifact of the coloring al-

gorithm. Additional preiteration steps would likely
alleviate this.

Figures 6.1, 6.3-6.6, and 6.8-6.10 illustrate
the situation where unconditionally stable LMM

schemes, such as the implicit Euler and 3-level BDF

methods, can converge to a wrong solution if one

picks the initial data inside the green region, even

though this region contains valid physical initial

data for the ODE. Thus, even though LMMs pre-
served the same number of fixed points as the un-

derlying ODE, these fixed points can change type

and stability. This phenomenon is related to the

"nonrobustness" of implicit methods sometimes

experienced in CFD computations. In these types

of computations where the initial data are not

known, the highest probability of avoiding spurious
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asymptotes is achieved when a fraction of the al-
lowable linearized stability limit of At is employed.

These diagrams also illustrate the unreliability

of trying to compute a true limit cycle with any

sizable At. This should not be surprising since

the scheme only gives an O(LXt p) (p is the order

of the scheme) approximation to the solution tra-
jectories. In addition, since the limit cycle is not

a fixed point, we would expect inaccuracies to be
introduced. However, inaccuracies are not easy to

detect in practice, especially when a numerical so-

lution produces the qualitative features expected.

Overall, the trapezoidal method and the midpoint

implicit method (figures not shown) give more accu-

rate solutions for the limit cycle. Note that all four

LMMs except the implicit Euler are second-order
accurate.

All of the four LMMs and four solution proce-

dure combinations exhibit spurious stable and un-

stable asymptotes except spurious steady states. It
is fascinating to see the dramatic difference in

shapes and sizes of numerical basins of attraction

for the different methods and solution procedure

combinations compared with the exact basin of at-
traction. The evolution of the numerical basin of

attraction as At changes is very traumatic for all
four LMMs and for the same LMM with different

solution procedures. For larger At, the noniterative

(linearized) implicit Euler, "implicit Euler + New-

ton", and "straight Newton" give the same numer-
ical basins of attraction. Simple iteration behaves

similarly to typical explicit methods (in terms of
stability and the size of numerical basin of attrac-

tion) for all of the four studied implicit methods

and for models (4.2) and (4.3) as well. The main

advantage of the simple iteration procedure over
nonLMM explicit methods is that spurious steady
states cannot occur.

Numerical experiments were also performed on

the dissipative complex model (4.1) using the adap-
tive time stepping strategies (5.20) and (5.21) based
on local truncation error control. Our studies indi-

cate that these two variable time step control im-

plicit and explicit methods (5.20) and (5.21) can
alleviate the spurious dynamics for most calcula-

tions. However, the allowable time step, determined

by (5.20) or (5.21), is too small for practical us-

age, especially for the explicit method (5.21). For

the implicit method (5.20), the allowable time step,
determined by (5.20), is slightly larger than the

explicit method (5.21), but it is still impractical

to use. Numerical experiments also indicated that

with the wrong combination of starting time step,

initial data and tolerance value, spurious dynamics

could occasionally be produced.

6.2. Numerical results for the

predator-prey equation

Selected results for the two representations of

numerical basins of attraction for the predator-

prey model (4.2) are shown in Figs. 6.11-6.22.

Figures 6.11-6.13 compare the noniterative with the

iterative procedures in solving the nonlinear alge-

braic equations using implicit Euler, trapezoidal,
and 3-level BDF methods. Figures 6.14-6.22 show

selected results of the numerical asymptotes with

basins of attraction superimposed using four differ-

ent Ats by the three implicit LMMs. Here, except

for Figs. 6.14, At = 0.4 and 0.415, the green re-

gions represent the numerical basins of attraction

for the stable spiral (2.1, 1.98) and red regions rep-
resent the numerical basins of attraction for the sta-

ble node (0, 0). The numerical basins of attraction

in Figs. 6.17 and 6.18 with At = 0.1 appear to be
the same as the exact basins of attraction of the DE

(4.2). The numerical basin of attraction by some of
the LMMs for the fixed point (0, 0) is larger than

the corresponding exact basin of attraction for the

DE (4.2). (See Figs. 6.15, and 6.16 when At = 0.1.)

In this case, the numerical basins of attraction for

the divergent solution (black region) is smaller than
the true one. The dramatic difference in shapes
and sizes of numerical basins of attraction for the

different methods and solution procedure combina-

tions compared with the exact basin of attraction is

even more fascinating than the dissipative complex
model.

All four LMMs and solution procedure combi-

nations, other than simple iteration, change the two

saddle points into stable or unstable fixed points of

other types as illustrated in Figs. 6.14-6.22. For the

implicit Euler, the two fixed points (2.1, 1.98) and
(0, 0) are unconditionally stable and the stabilized

fixed points (1, 0) and (3, 0) (saddles for the origi-

nal ODE) are almost unconditionally stable except
for small At. This is most interesting in the sense
that the numerical basins of attraction for the sta-

ble exact fixed points UE of the model (4.2) by the

implicit Euler method were permanently altered for
At near or larger than 3, as illustrated in Figs. 6.15-

6.17. It would be easier to interpret the results in

Fig. 6.11 if one interchanged the yellow and green
colors for At > 1. Our studies also indicated that
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for larger At, the linearized implicit Euler, "implicit

Euler + Newton", and "straight Newton" give the
identical numerical basins of attraction. See also

Yee & Sweby [1992] for some discussion and illus-

tration. Although the trapezoidal method, 3-level
BDF, and the midpoint implicit method did not

turn the two saddle points (1, 0) and (3, 0) into

stable fixed points of different type, they did turn

the two saddle points into unstable fixed points of
different types.

The evolution of the numerical basin of attrac-

tion (as At changes) is very dramatic by each of

the four LMMs. Take for example the trapezoidal

method (Figs. 6.18-6.20), where the scheme be-

comes effectively unstable for large At. The size
of the numerical basins of attraction for the sta-

ble fixed points UE shrink to almost nonexistence.

This phenomenon might be one of the contribut-

ing factors to the unpopularity of the trapezoidal

method in CFD. The basins are so fragmented and

small for large At that they are beyond the accu-
racy of the CM-2 to resolve and no further attempt

was made. A better approach in computing these

types of basins is to use interval arithmetic or the

enclosure type method [Adams, 1990].

Our results for the predator-prey model indi-

cate that linearized implicit methods are more ro-
bust and are more efficient than the other three it-

eration procedures and have a higher success rate of

leading to physically correct steady states. In gen-
eral, it seems that if one uses a At far below what

the linearized stability limit predicts, one has a bet-

ter chance of avoiding spurious dynamics. Other-

wise, the knowledge of numerical basins of attrac-

tion is vital in avoiding spurious dynamics when

using a fixed time step that is larger than the stabil-

ity limit of the standard explicit methods studied in

Yee & Sweby [1992]. Comparing the current results
with those in Yee & Sweby [1992], the implication

is that unconditionally stable implicit methods are,

in general, safer to use and have larger numerical
basins of attraction than explicit methods. How-

ever, one cannot use too large a time step since the
numerical basins of attraction can be so small that

the initial data has to be very close to the exact

solution for convergence.

Numerical experiments performed on the vari-

able time step control (5.20) and (5.21) for model

(4.2) also indicate that, although variable time step

controls are not foolproof, they might alleviate the

spurious dynamics most of the time. One shortcom-

ing is that in order to avoid spurious dynamics, the

required size of At is impractical to use, especially

for the explicit method (5.21).

6.3. Numerical results for the

perturbed Hamiltonian equation

Selected results for the two representations of

numerical basins of attraction for the perturbed
Hamiltonian model (4.3) (viscous Burgers' equa-

tion with 3-point central in space) are shown in

Figs. 6.23-6.33 for _ = 0.1. Figures 6.23-6.25 com-

pare the noniterative and iterative solution proce-

dures for solving the nonlinear algebraic equations

using implicit Euler, trapezoidal, and 3-level BDF

methods. Figures 6.26-6.33 show selected results
of the numerical asymptotes with basins of attrac-

tion superimposed for four different At's. In all of

Figs. 6.23-6.33, red regions represent the numerical

basins of attraction for the stable spiral (1/3, 1/3).

The numerical basins of attraction in Figs. 6.28,

6.30, and 6.33 with At = 0.1 appear to be the same
as the exact basins of attraction. The numerical

basin of attraction for (1/3, 1/3) is larger than the

corresponding exact basin of attraction for At = 1
by the implicit Euler and the 3-level BDF meth-

ods. See Figs. 6.26, 6.27, 6.31, and 6.32. Note also
that the possibility of the numerical basin of at-

traction being larger than the exact one does not
always occur when the time step is the smallest.

For larger At the linearized implicit Euler, "implicit

Euler + Newton", and "straight Newton" give the
same numerical basins of attraction. A conclusion

similar to that arrived at in Sec. 6.2 for nonitera-

tive and iterative procedures applies here. Since the
midpoint implicit method behaves similarly to the

trapezoidal method and the 3-level BDF exhibits

behavior similar to that discussed in the previous
section, our discussion is restricted to the implicit
Euler and trapezoidal methods.

Implicit Euler Method:

This is yet another interesting illustration of the use

of an unconditionally stable implicit method where

in practical computations, when the initial data are

not known, the scheme has a higher chance of ob-

taining a physically correct solution if one uses a

At restriction slightly larger than that for the sta-

bility limit of an explicit method. Figures 6.23 and
6.26-6.28 show the two representations of numer-

ical basins of attraction using the implicit Euler

method. These figures show the generation of stable
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Fig. 6.26. (Continued)

spurious asymptotes for At _> 1. As At increases

further, the size of the same numerical basin de-
creases and becomes fractal-like, and new nu-

merical basins are generated. The numerical
basin of attraction for (1/3, 1/3) was permanently

altered for At near or larger than 10. In general,

the linearized implicit Euler is more efficient and

less likely to converge to a spurious asymptote than
the other combinations of LMMs and solution

procedures.

Trapezoidal Method:

Figures 6.24, 6.29, and 6.30 show the two repre-

sentations of numerical basins of attraction using
the trapezoidal method. In a manner similar to

the linearized implicit Euler method, this scheme

has a higher probability of obtaining a physically
correct solution if one uses a At similar to that of

an explicit method. The numerical basins of at-

traction for (1/3, 1/3) computed by the linearized

trapezoidal method are much larger than the cor-

responding exact basin of attraction for At _< 2.

Their sizes are bigger than the ones generated by

the implicit Euler method with the same At
values. The same behavior exists for the 3-level

BDF method. As At increases, the shrinkage of
the numerical basins of attraction is more dramatic

than for the other two LMMs. In most cases with

larger At, the allowable initial data required to

avoid spurious dynamics is impractical to use since

the "safe" initial data has to be very close to the ex-

act steady-state solution. Again, this phenomenon

might be one of the contributing factor to the un-

popularity of the trapezoidal method in CFD ap-

plications. For large At, the linearized trapezoidal

scheme becomes effectively unstable due to the frag-

mentation of the numerical basins of attraction (see

Yee & Sweby [1992] for the plots). Again, due to
the high cost of double precision computations, no

further attempts were made for large At. The com-

putation of these basins requires an interval arith-

metic or the enclosure [Adams, 1990] type of math-

ematical operation before a more precise behavior
can be revealed.
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Fig. 6.33

7. General Discussion of Numerical

Results

Studies showed that all of the four implicit LMMs

exhibit a drastic distortion but less shrinkage of
the basin of attraction of the true solution than

standard explicit methods studied in Yee & Sweby

[1992]. In some cases with smaller At (near the

linearized stability limit of standard explicit meth-

ods), the implicit LMMs exhibit enlargement of the

basins of attraction of the true solution. Overall,
the numerical basins of attraction of a noniterative

implicit procedure mimics more closely the basins of
attraction of the continuum than the studied itera-

tive implicit procedures for the four implicit LMMs.

In general, the numerical basins of attraction bear
no resemblance to the exact basins of attraction.

The size can increase or decrease depending on the

time step. Also, the possible existence of the largest

numerical basin of attraction that is larger than the

exact one does not occur when the time step is the

smallest. The dynamics of numerics of the implicit

methods differ significantly from each other, and the

different methods of solving the resulting nonlin-

ear algebraic equations are very different from each
other since different numerical methods and solu-

tion procedures result in entirely different nonlinear

discrete maps. Although unconditionally stable im-

plicit methods allow theoretically large At, the nu-

merical basins of attraction (allowable initial data)

for large At sometimes are so fragmented and/or

so small that the safe (or practical) choice of At is

slightly larger or comparable to the stability limit
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of standard explicit methods. In general, if one
uses a At that is a fraction of the stability limit, one

has a higher chance of convergence to the correct
asymptote. Studies in Yee & Sweby [1992] for stan-

dard explicit methods confirmed this phenomenon.
One of the causes of the above behavior of im-

plicit LMMs is the existence of stable and unstable

spurious asymptotes other than steady states which

have a similar detrimental (in terms of robustness)

effect as explicit methods. Another cause of the
observed behavior is due to the fact that an unsta-

ble fixed point can become a stable fixed point and

can change type, e.g., from a saddle to a stable or

unstable node. One consequence of the stabiliza-

tion of unstable fixed points is a distortion, shrink-

age and/or segmentation of the resulting numerical
basin of attraction of the true steady states. An-

other consequence of this behavior is that the flow

pattern can change topology as the discretized pa-
rameter is varied. Thus, even though LMMs pre-

serve the same number (but not the same types) of

fixed points as the underlying DEs, the numerical
basins of attraction of LMMs do not coincide with

the exact basins of attraction of the DEs even for

small At. Some of the dynamics of the LMMs ob-

served in our study can be used to explain the root

of why one cannot achieve the theoretical linearized

stability limit of the typical implicit LMMs in prac-

tice when solving strongly nonlinear DEs (e.g., in

CFD).

Additional general remarks can be made for the

following comparisons, independent of the four im-

plicit LMMs:

Simple Iteration versus Other Studied Methods:

The stability and numerical basins of attraction by

simple iteration are similar to those of standard

Runge-Kutta and other commonly used explicit

methods. The only advantage in using the "im-

plicit method + simple iteration" over nonLMM

explicit methods is that spurious steady states
cannot occur.

Noniterative versus Iterative:

If one uses an implicit LMM for the time-dependent

approach to obtaining steady-state numerical solu-

tions, the linearized (or noniterative) version of the

implicit methods are more ej_cient and less likely

to converge to a spurious asymptote or get trapped
in a spurious limit cycle than the other three stud-

ied iterative procedures. Overall, the noniterative

implicit Euler scheme is more stable and less likely

to converge to a spurious asymptote than the
other combinations of LMMs and solution proce-

dures. The phenomenon can explain more precisely

a contributing factor to the popularity of the non-
iterative implicit Euler in CFD applications.

Straight Newton versus Other Studied Methods:

Studies indicated that contrary to popular belief,

the initial data using the straight Newton method

may not have to be close to the exact solution for

convergence. Straight Newton also exhibits stable
and unstable spurious asymptotes. Initial data can

be reasonably removed from the asymptotic values
and still be in the basin of attraction. However, the

basins can be fragmented even though the corre-

sponding exact basins of attraction are single closed

domains. The cause of nonconvergence may just as

readily be due to the fact that the numerical basins
of attraction are fragmented. In many cases, the
results obtained are better than those obtained by

the trapezoidal and 3-level BDF methods (regard-

less of the three iterative procedures). If one uses

a time step slightly bigger than the stability limit

of standard explicit methods for the four LMMs,

straight Newton can have similar or better perfor-
mance. In fact, using a large At by the linearized

implicit Euler method or the implicit Euler + New-

ton procedure has the same chance of obtaining the

correct steady state as the straight Newton method
if the initial data are not known or arbitrary initial

data is taken.

Variable Time Step Control:

Our studies showed that the variable time step con-

trol method (5.20) can occasionally stabilize un-

stable fixed points, depending on the initial data,

starting time step, and the value of "toll". One

shortcoming is that the size of At needed to avoid

spurious dynamics is impractical to use, especially

for the explicit method (5.21).
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