9,147 research outputs found

    Temperature and intensity dependence of the performance of an electron-irradiated (AlGa)As/GaAs solar cell

    Get PDF
    The performance of a Hughes, liquid-phase epitaxial 2 centimeter-by-2 centimeter, (AlGa)As/GaAs solar cell was measured before and after irradiations with 1 MeV electrons to fluences of 1 x 10 to the 16th power electrons/sq cm. The temperature dependence of performance was measured over the temperature range 135 to 415 K at each fluence level. In addition, temperature dependences were measured at five intensity levels from 137 to 2.57 mW/sq cm before irradiation and after a fluence of 1 x 10 to the 16th power electrons/sq cm. For the intermediate fluences, performance was measured as a function of intensity at 298 K only

    Comparative radiation testing of solar cells for the shuttle power extension package

    Get PDF
    The Power Extension Package (PEP) is the prime focus of a development program to produce low cost solar cells. The PEP is a 32 kilowatt flexible substrate, retrievable, solar array system for use on the Space Shuttle. Solar cell cost will be reduced by increasing cell area and simplifying cell and coverglass fabrication processes and specifications. The cost goal is to produce cells below $30 per watt. Two and ten ohm-cm silicon cells were investigated. This paper describes a unique radiation damage test and side-by-side comparison of candidate cell types with pre-and post-irradiation airplane calibration of outer space short-circuit current

    Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells

    Get PDF
    The n/p homojunction GaAs cell is found to be more radiation resistant than p/nheteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations

    Progress in indium phosphide solar cell research

    Get PDF
    Progress, dating from the start of the Lewis program, is reviewed emphasizing processing techniques which have achieved the highest efficiencies in a given year. To date, the most significant achievement has been attainment of AM0 total area efficiencies approaching 19 percent. Although closed tube diffusion is not considered to be an optimum process, reasonably efficient 2cm x 2cm and 1cm x 2cm InP cells have been produced in quantity by this method with a satellite to be launched in 1990 using these cells. Proton irradiation of these relatively large area cells indicates radiation resistance comparable to that previously reported for smaller InP cells. A similar result is found for the initial proton irradiations of ITO/InP cells processed by D. C. sputtering. With respect to computer modelling, a comparison of n/p homojunction InP and GaAs cells of identical geometries and dopant concentrations has confirmed the superior radiation resistance of InP cells under 1 MeV electron irradiations

    Indium phosphide solar cell research in the US: Comparison with nonphotovoltaic sources

    Get PDF
    Highlights of the InP solar cell research program are presented. Homojunction cells with AMO efficiences approaching 19 percent were demonstrated while 17 percent was achieved for indium tin oxide (ITO)/InP cells. The superior radiation resistance of these latter two cell configurations over both Si and GaAs were demonstrated. InP cells on board the LIPS III satellite show no degradation after more than a year in orbit. Computer modeling calculations were directed toward radiation damage predictions and the specification of concentrator cell parameters. Computed array specific powers, for a specific orbit, are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems

    Potential for use of indium phosphide solar cells in the space radiation environment

    Get PDF
    Indium phosphide solar cells were observed to have significantly higher radiation resistance than either GaAs or Si after exposure to 10 MeV proton irradiation data and previous 1 MeV electron data together with projected efficiencies for InP, it was found that these latter cells produced more output power than either GaAs or Si after specified fluences of 10 MeV protons and 1 MeV electrons. Estimates of expected performance in a proton dominated space orbit yielded much less degradation for InP when compared to the remaining two cell types. It was concluded that, with additional development to increase efficiency, InP solar cells would perform significantly better than either GaAs or Si in the space radiation environment

    Contrasting habitat associations of imperilled endemic stream fishes from a global biodiversity hot spot

    Get PDF
    Knowledge of the factors that drive species distributions provides a fundamental baseline for several areas of research including biogeography, phylogeography and biodiversity conservation. Data from 148 minimally disturbed sites across a large drainage system in the Cape Floristic Region of South Africa were used to test the hypothesis that stream fishes have similar responses to environmental determinants of species distribution. Two complementary statistical approaches, boosted regression trees and hierarchical partitioning, were used to model the responses of four fish species to 11 environmental predictors, and to quantify the independent explanatory power of each predictor

    GaAs homojunction solar cell development

    Get PDF
    The Lincoln Laboratory n(+)/p/p(+) GaAs shallow homojunction cell structure was successfully demonstrated on 2 by 2 cm GaAs substrates. Air mass zero efficiencies of the seven cells produced to date range from 13.6 to 15.6 percent. Current voltage (I-V) characteristics, spectral response, and measurements were made on all seven cells. Preliminary analysis of 1 MeV electron radiation damage data indicate excellent radiation resistance for these cells

    Amygdala reactivity predicts adolescent antisocial behavior but not callous-unemotional traits.

    Get PDF
    Recent neuroimaging studies have suggested divergent relationships between antisocial behavior (AB) and callous-unemotional (CU) traits and amygdala reactivity to fearful and angry facial expressions in adolescents. However, little work has examined if these findings extend to dimensional measures of behavior in ethnically diverse, non-clinical samples, or if participant sex, ethnicity, pubertal stage, and age moderate associations. We examined links between amygdala reactivity and dimensions of AB and CU traits in 220 Hispanic and non-Hispanic Caucasian adolescents (age 11-15; 49.5% female; 38.2% Hispanic), half of whom had a family history for depression and thus were at relatively elevated risk for late starting, emotionally dysregulated AB. We found that AB was significantly related to increased right amygdala reactivity to angry facial expressions independent of sex, ethnicity, pubertal stage, age, and familial risk status for depression. CU traits were not related to fear- or anger-related amygdala reactivity. The present study further demonstrates that AB is related to increased amygdala reactivity to interpersonal threat cues in adolescents, and that this relationship generalizes across sex, ethnicity, pubertal stage, age, and familial risk status for depression

    Voltage controlling mechanisms in low resistivity silicon solar cells: A unified approach

    Get PDF
    An experimental technique capable of resolving the dark saturation current into its base and emitter components is used as the basis of an analysis in which the voltage limiting mechanisms were determined for a variety of high voltage, low resistivity silicon solar cells. The cells studied include the University of Florida hi-low emitter cell, the NASA and the COMSAT multi-step diffused cells, the Spire Corporation ion-implanted emitter cell, and the University of New South Wales MINMIS and MINP cells. The results proved to be, in general, at variance with prior expectations. Most surprising was the finding that the MINP and the MINMIS voltage improvements are due, to a considerable extent, to a previously unrecognized optimization of the base component of the saturation current. This result is substantiated by an independent analysis of the material used to fabricate these devices
    corecore