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INDIUM PHOSPHIDE SOLAR CELL RESEARCH IN THE UNITED STATES - 

COMPARISON WITH NONPHOTOVOLTAIC SOURCES 

I. Weinberg, C.K. Swartz, and R.E. Hart, Jr. 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

SUMMARY 

Highlights of the InP solar cell research program are presented. Homo- 
junction cells with AM0 efficiencies approaching 19 percent were demonstrated 
while 17 percent has been achieved for ITO/InP cells. The superior radiation 
resistance of these latter two cell configurations over both Si and GaAs have 
been demonstrated. InP cells on board the LIPS 111 satellite show no degrada- 
:ion after more than a year in orbit. Computer modelling calculations have 
been d:rected toward radiation damage predictions and the specification of con- 
centrator cell parameters. Computed array specific powers, for a specific 
orbit, are used to compare the performance of an InP solar cell array to solar 
dynamic and nuclear systems. 
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INTRODUCTION 

Though still in an early developmental stage, indium phosphide solar 
cells are prime candidates for use in the space radiation environment. 
is apparent from their greatly increased radiation resistance when compared to 
gallium arsenide and silicon (refs. 1 and 2). It has also been shown that 
radiation damage in InP can be reduced by exposure to light at room tempera- 
ture (ref. 3). In addition, air mass zero efficiencies of over 21 percent are 
predicted by computer modelling calculations (ref. 4 ) .  These results have 
served as motivation for the NASA Lewis Research Center to initiate and con- 
tinue a program of InP solar cell research directed toward their use in space. 
This research effort has, involved, beside NASA Lewis and the Naval Research 
Laboratory, efforts at several universities and industrial laboratories in the 
United States. At the same time, a continuing major effort i s  underway i n  
Japan. Additional ongoing research in the United Kingdom has been focused 
mainly on the development o f  ITO/InP solar cells. 
highlights in the U.S. program. Results emanating from other countries are 
included where appropriate. 

This 

The current paper summarizes 

BACKGROUND 

Considering silicon solar cells, a long period of R&D directed toward 
their use in space, was followed by an intensive program directed toward their 
use in the terrestrial environment. Exactly the opposite has occurred for InP. 
Prior to 1984, published research on InP solar cells was concerned with terres- 
trial applications. Much of the early work considered multicomponent struc- 
tures such as ITO/InP, Cds/InP (refs. 5 and 7 )  and simplified structures such 
as MIS Schottky barrier cells (ref. 8). Reports of the first reasonably good 
monolithic cell appeared in 1980 (ref. 9). A summary of some early results is 
shown in table I for measurements reported at other than air mass zero. 



The f i r s t  r e p o r t e d  r a d i a t i o n  damage d a t a  on I n P  appeared i n  1984 when 
Yamaquchi and h i s  coworkers i n  Japan r e p o r t e d  on t h e  comparat ive r a d i a t i o n  
r e s i s t a n c e  o f  InP,  GaAs and S i  under 1 MeV e l e c t r o n  i r r a d i a t i o n  ( r e f .  2 ) .  This  
was f o l l o w e d ,  i n  the  U n i t e d  S t a t e s  by the  observed s u p e r i o r  r a d i a t i o n  r e s i s t -  
ance o f  InP  over  GaAs and S i  under 10 Mev p r o t o n  i r r a d i a t i o n  ( r e f .  1 ) .  I t  can 
be noted from t a b l e  I, t h a t  a wide d i s p a r i t y  o f  r e p o r t i n g  methodology e x i s t e d  
i n  the t e r r e s t r i a l  e f f o r t .  Measurements i n  t h i s  e a r l y  program w e r e  r e p o r t e d  
a t  a i r  masses v a r y i n g  between 1 and 2 and, i n  some cases, i n  t e r m s  of a c t i v e ,  
r a t h e r  than t o t a l  c e l l  area.  S ince i t  i s  s tandard p r a c t i c e  i n  t h e  space s o l a r  
c e l l  community t o  r e p o r t  t o t a l  a rea  e f f i c i e n c i e s  a t  a i r  mass zero,  we s h a l l  

I adhere t o  t h i s  procedure i n  t h e  remainder  o f  t h i s  paper .  

CELL PERFORMANCE 

Progress i n  a c h i e v i n g  h i g h  e f f i c i e n c y ,  d a t i n g  from 1984, i s  shown i n  f i g -  
u r e  1 .  The f irst c e l l s  w e r e  prepared by a c l o s e d  tube d i f f u s i o n  process 
( r e f s .  2 and 1 1 ) .  The h i g h e s t  e f f i c i e n c y  (18.8 p e r c e n t )  was achieved by a com- 
b i n a t i o n  o f  b o t h  OMCVD and i o n - i m p l a n t a t i o n  ( r e f .  12) .  The geometry and dopant 
c o n c e n t r a t i o n  o f  t h i s  c e l l  a r e  shown i n  f i g u r e  2 .  I n  a d d i t i o n  to  t h e  aforemen- 
t i o n e d  p rocess ,  c e l l s  i n  t he  U.S. have been processed by open tube d i f f u s i o n  
and LPE ( r e f s .  1 3  and 1 5 ) .  A l l  o f  t h e  c e l l s  d e p i c t e d  i n  f i g u r e  1 were smal l  
w i t h  areas v a r y i n g  between 0.25 and 0.31 cm2. These s i z e s  r e p r e s e n t  economic 
l i m i t a t i o n s  imposed by t h e  h i g h  I n P  wafer c o s t .  La rge r  a rea  ( 2  and 4 cm2) 
c e l l s  have been produced i n  Japan u s i n g  a c l o s e d  tube d i f f u s i o n  process 
( r e f .  16) .  These l a t t e r  c e l l s  have been produced i n  r e l a t i v e l y  l a r g e  q u a n t i -  
t i e s  arid a r e  i n tended  to  power a smal l  p i g g y  back l u n a r  o r b i t e r  on board t h e  
Japanese MUSES A s a t e l l i t e ,  scheduled for  launch i n  1990 ( r e f .  1 7 ) .  The h igh -  
e s t  e f F i c i e n c y  achieved f o r  these l a r g e  a rea  c e l l s  is 16.6 p e r c e n t .  Th i s  
rep resen ts  t h e  b e s t  e f f i c i e n c y  achieved u s i n g  a d i f f u s i o n  process ( r e f .  1 6 ) .  
I n  a d d i t i o n  to  m o n o l i t h i c  InP, c e l l s  processed by s p u t t e r i n g  n- ind ium t i n  
o x i d e  o n t o  p-type I n P  ( ITO/ InP>  a r e  o f  i n t e r e s t  because t h e y  r e p r e s e n t  a s i m -  
p l e r ,  r e l a t i v e l y  i nexpens ive  p r o c e s s i n g  a l t e r n a t i v e .  The b e s t  ITO/ InP  c e l l s ,  
processed a t  S E R I  by DC magnetron s p u t t e r i n g ,  have ach ieved  AM0 e f f i c i e n c i e s  
o f  17 pe rcen t  ( r e f .  18 ) .  Parameters o f  t h e  b e s t  c e l l s  produced by  d i f f e r e n t  
techniques a re  shown i n  t a b l e  11. O f  t h e  v a r i o u s  processes l i s t e d ,  OMCVD i s  
the  most f l e x i b l e  and has produced t h e  b e s t ,  a l b e i t  smal l  a rea ,  c e l l s .  

EFFECTS OF R A D I A T I O N  

Exper imenta l  Data 

Both n / p  homojunct ion and ITO/InP c e l l s  a r e  i n c l u d e d  i n  smal l  expe r imen ta l  
modules, p r e s e n t l y  i n  space, on board t h e  LIPS I11 s a t e l l i t e  ( r e f s .  19 and 20). 
The homojunct ion c e l l  module was s u p p l i e d  by NASA Lewis.  The ITO/ InP module 
con ta ins  c e l l s  processed by Newcast le Upon Tyne P o l y t e c h n i c  and i s  under t h e  
aeg is  o f  RAE Harnwe l l .  The s t a t u s  o f  the  NASA Lewis module w i l l  be d i scussed  
a t  t h i s  conference ( r e f .  20). I n  summation, a f t e r  more than  a year  i n  o r b i t ,  

have no i n f o r m a t i o n  on t h e  ITO/ InP module. S ince t h e  l a t t e r  c e l l s  r e p r e s e n t  a 
s i m p l i f i e d  p r o c e s s i n g  a l t e r n a t i v e ,  and reasonable h i g h  e f f i c i e n c i e s  have been 
achieved, i t  i s  necessary t o  determine t h e i r  comparat ive performance i n  a labo-  
r a t o r y  env i ronment .  Hence, we have i r r a d i a t e d  ITO/ InP c e l l s ,  o b t a i n e d  from 

I no degrada t ion  was observed i n  t h e  homo junc t i on  c e l l s .  On t h e  o t h e r  hand, we I 
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S E R I ,  w i t h  10 MeV p ro tons  and compared t h e i r  performance to  n / p  I n P  and GaAs 
homo\jbnction c e l l s  i n c l u d i n g  l a r g e  a rea  n /p  c e l l s  s i m i l a r  t o  those on board 
the MLSES A s a t e l l i t e .  P r e i r r a d i a t i o n  parameters f o r  these c e l l s  a r e  shown i n  
t a b l e  I 1 1  w h i l e  f i g u r e  3 shows no rma l i zed  e f f i c i e n c y  as a f u n c t i o n  o f  f l u e n c e .  
I t  i s  seen t h a t  t h e  ITO/InP c e l l s  e x h i b i t  r a d i a t i o n  r e s i s t a n c e ,  under 10 MeV 
p r o t o n  i r r a d i a t i o n s ,  which i s  comparable to  t h a t  o f  t h e  I n P  homo junc t i on  c e l l s .  
I t  i s  noted t h a t  t h e  l a r g e r  I n P  c e l l  ou tpe r fo rms  t h e  r e m a i n i n g  c e l l s  a t  low 
f luences b u t  f a l l s  o f f  a t  t h e  h i g h e r  f l uences .  W i th  r e g a r d  t o  the  b e h a v i o r  a t  
h i g h  f l u e n c e ;  i t  i s  noted t h a t  t h e  j u n c t i o n  depth o f  t h e  l a r g e r  I n P  c e l l  l i e s  
between 0.2 and 0.3 pm ( r e f .  16) w h i l e  the  j u n c t i o n  dep th  o f  t h e  s m a l l e r  a rea  
c e l l  i s  w e l l  under 0.1 pm ( r e f .  13 ) .  Dependence o f  r a d i a t i o n  r e s i s t a n c e  on 
j u n c t i o n  depth has p r e v i o u s l y  been no ted  f o r  GaAs where a decrease i n  j u n c t i o n  
depth accompanied increased r a d i a t i o n  r e s i s t a n c e  ( r e f .  2 1 ) .  I n  t h e  absence of 
s i m i l a r  da ta  for InP ,  i t  i s  specu la ted  t h a t  t h e  f a l l  o f f  a t  h i g h  f l u e n c e  may 
be due t o  t h e  c e l l ' s  r e l a t i v e l y  deep j u n c t i o n  dep th .  On t h e  o t h e r  hand, the  
i nc reased  r a d i a t i o n  r e s i s t a n c e ,  observed a t  lower  f l u e n c e ,  may be due to  
improved s a b s t r a t e  q u a l i t y .  A d d i t i o n a l  research  i s  r e q u i r e d  to  assess the  

d i  t y  of these s p e c u l a t i o n s .  

M o d e l l i n g  o f  R a d i a t i o n  Damage 

Comparison of InP and GaAs c e l l s ,  under l a b o r a t o r y  c o n d i t i o n s ,  have 
oyed c e l l s  w i t h  w i d e l y  d i f f e r i n g  BOL c h a r a c t e r i s t i c s .  For  example; t he  
GaAs c e l l  o f  f i g u r e  3 has a base dopant c o n c e n t r a t i o n  which i s  an o r d e r  o f  

magn'ltude g r e a t e r  than t h a t  o f  t h e  I n P  c e l l s .  P rev ious  comparisons under 1 MeV 
e l e c t r o n  i r r a d i a t i o n s ,  shown i n  f i g u r e  4 ,  have used p / n  GaAs c e l l s  w i t h  an 
AlGaAs window and compared them to  n / p  I n P  c e l l s  w i t h  no window and w i t h  w i d e l y  
d i f f e r i n g  base dopant c o n c e n t r a t i o n s  ( r e f .  22).  I n  o r d e r  to  compare these 
c e l l s  on an equal  b a s i s ,  a c a l c u l a t i o n  was per formed u s i n g  a p r e v i o u s l y  pub- 
l i s h e d  computer model ( r e f .  23 ) .  Parameters used i n  t h e  comparison a r e  shown 
i n  t a b l e  I V .  The model p r e d i c t s  an AM0 e f f i c i e n c y  o f  20.4 p e r c e n t  f o r  I n P  and 
2 1 . 5  p e r c e n t  for GaAs. However by r e d u c i n g  t h e  e m i t t e r  w i d t h  t o  300 A ,  g r i d  
shadowing t o  4 p e r c e n t  and use o f  an o p t i m i z e d  2 l a y e r  AR c o a t i n g ,  t h e  optimum 
e f f i c i e n c y  i s  21.5 p e r c e n t  f o r  InP  and 22.5 p e r c e n t  f o r  GaAs. 

Because o f  c a r r i e r  removal e f f e c t s ,  l i f e t i m e  r a t h e r  than  d i f f u s i o n  l e n g t h  
damage c o e f f i c i e n t s  were  employed us ing ,  1/, = l/rg + K-t +, where K, i s  t h e  
l i f e t i m e  damage c o e f f i c i e n t .  The p l o t  used t o  o b t a i n  K, f o r  InP i s  shown i n  
f i g u r e  5 ,  a s i m i l a r  p l o t  b e i n g  used f o r  GaAs. From these d a t a ,  i t  was found 
t h a t ,  f o r  a p-base c o n c e n t r a t i o n  o f  5xl016/cm3, K, = 1 . 3 ~ 1 0 - 6  and 3 .1~10-5  c m 2 /  
sec For InP and GaAs r e s p e c t i v e l y .  The c a l c u l a t e d  performance f o r  these c e l l s  
under. 7 MeV e l e c t r o n  i r r a d i a t i o n ,  i s  shown i n  f i g u r e  6 where i t  i s  seen t h a t  
the InP c e l l  ou tpe r fo rms  t h e  GaAs c e l l .  

Es t lma ted  Performance i n  Space 

A comparison o f  t h e  e s t i m a t e d  performance, o f  PV a r r a y s  and n u c l e a r  and 
s o l a r  dynamic systems, i n  a 30" c i r c u l a r  o r b i t ,  i s  shown i n  f i g u r e  7 .  A r r a y  
s p e c i f i c  powers w e r e  o b t a i n e d  for a d i s t r i b u t i o n  o f  a l t i t u d e s  w i t h  a 5 y r  s t a y  
a t  each a l t i t u d e .  The c a l c u l a t i o n s  were per formed u s i n g  s i l i c o n  1 MeV e l e c t r o n  
e q u i v a l e n t  d a t a  ( r e f .  24 ) .  T h i s  i s  a d m i t t e d l y  a rough a p p r o x i m a t i o n  f o r  GaAs 
an3 InP.  However, i t  i s  f e l t  t h a t  t h e  use o f  s i l i c o n  d a t a  tends t o  o v e r e s t i -  
mate t h e  d e g r a d a t i o n  o f  t h e  I I I - V  s o l a r  c e l l s .  S p e c i f i c  powers were c a l c u l a t e d  
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using published data for the JPL/TRW Advanced Photovoltaic Solar Array (APSA) 
(ref. 2 5 ) .  
spec fic power of approximately 132 W/kg using 2 . 2  mil, 13.5 percent silicon 
solar cells , a 2 mil cover glass and a 10 percent weight add-on for contingen- 
cies Our calculations were performed using the same cell thickness with the 
substitution of a 10 mil cover glass. The BOL efficiencies used, at 28 "C for 
the flat plate cells, were 18, 19 and 15 percent for InP, GaAs and S i  respec- 
tive;y. These values were felt to be reasonably close to the values achievable 
in productton. 
lens concentrator array at 100 "C and l O O X  assuming a BOL efficiency of 22 per- 
cent at this concentration and temperature (refs. 26 and 2 9 ) .  The considerable 
effect of battery storage was included by assuming 100 W-Hr/kg for the battery 
and a nominal eclipse period of 112 hr. 
appears achievable using sodium-sulphur batteries. Specific powers for the 
nuclear (SP-100) and solar dynamic systems were obtained from previously pub- 
iished data, assuming no degradation while in orbit (ref. 2 7 ) .  It was also 
assumed. based on annealing data, that the InP conceqtrator cells would not 
degrade at l O O X  and 100°C (refs. 3 and 2 8 ) .  The results indicate that the InP 
flat plate and concentrator salar cell arrays could outperform the solar- 
dynamic system and that the concentrator system performs as well as the nuclear 
system. These results are tentative, pending the acquisition of 1 MeV electron 
damage equivalents for InP and GaAs and confirmation o f  the assumed annealing 

I behaviar or' the Inp concentrator rells. It is also noted that the APSA array 
i s  an advanced system whose ultimate goal i s  to achieve a specific power of 
300 Cllkg (ref. 25). 

The 5.3 kW wing developed under the APSA program achieves a BOL 

An additional specific power was calculated for InP in a Fresnel 

The battery specific energy used 

I PREDICTED BEHAVIOR UNDER CONCENTRATION 

The high cost of InP wafers makes concentrators, with their greatly 
decreased cell slze, an attractive alternative. Since Inf concentrator cells 
are not readily available, we used the model of reference 23 to compute the 
expected performance of these cells under varying concentration and tempera- 
ture. The calculations were performed using cell geometries suitable for the 
cassegranian and SLATS concentrators. The geometry of a circular cell for the 
Cassegranian concentrator and a rectangular cell for the SLATS concentrator are 
shown in figures 8 and 9. Cell parameters are shown in table V .  Some calcula- 
ted results are shown in figures 10 and 11. At 80" and lOOX, the circular cell 
,fficiency i s  21.1 percent while the rectangular cell efficiency, at 80 " C  and 
Z O X ,  i s  20.6 percent. It is noted that a more comprehensive computer model is 
under development, using a multilayer AR coating and i s  expected to add at 
least 1 percent to these efficiencies. Furthermore, the addition of a pris- 
matic cell cover i s  expected to also add efficiencies between 1 and 2 percent 
(ref. 2 6 ) .  

CONCLUSION 

Although progress in developing InP cells for use in space has been satis- 
factory, several avenues of research merit increased attention. Additional 
effort needs to be directed toward producing large area high efficiency 
devices. Since cells 8 cm2 in area are commonplace for both Si and GaAs, this 
size i s  a desirable goal for InP. However a more significant contribution lies 
in reoucing cell cost. At present the wafer accounts for over 90 percent o f  
the cell cost. One effort, now underway, aims toward the processing of solar 
cells using a few microns of InP epitaxially deposited on cheaper substrates 
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such a s  S i .  In this case one needs to overcome problems caused by lattice mis- 
fit and thermal expansion differences. Additional research is directed toward 
the use o f  techniques such as the CLEFT process. This latter method incorpo- 
rate!; the use of reuseable substrates. In addition to the preceding there 
exists a need for high efficiency concentrator cells. In our opinion, succC?Ss- 
ful ccmpletion o f  these efforts is required in order t o  realize the full poten- 
tial cf InP solar cells for use in space. 
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