8,151 research outputs found

    Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    Get PDF
    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations

    Principles And Practices Fostering Inclusive Excellence: Lessons From The Howard Hughes Medical Instituteā€™s Capstone Institutions

    Get PDF
    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Instituteā€™s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform othersā€™ efforts to increase access to and persistence in STEM in higher education

    Radiation and temperature effects in gallium arsenide, indium phosphide and silicon solar cells

    Get PDF
    The effects of radiation on performance are determined for both n(+)p and p(+)n GaAs and InP cells and for silicon n(+)p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1 MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation induced boron-oxygen defect. Comparison of radiation damage in both p(+)n and n(+)p GaAs cells yields a decreased radiation resistance for the n(+)p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n(+)p configuration is found to have greater radiation resistance than the p(+)n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/cT which predicts that increased Voc should results in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP a result which is attributed to variations in cell processing

    Pharmacokinetics of Quinapril and its Active Metabolite Quinaprilat During Continuous Ambulatory Peritoneal Dialysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97278/1/j.1552-4604.1990.tb01857.x.pd

    Dielectric nonlinearity of relaxor ferroelectric ceramics at low ac drives

    Full text link
    Dielectric nonlinear response of (PbMg1/3_{1/3}Nb2/3_{2/3}O3_3)0.9_{0.9}(PbTiO3_3)0.1_{0.1} (0.9PMN-0.1PT) relaxor ceramics was investigated under different ac drive voltages. It was observed that: (i) the dielectric permittivity is independent on ac field amplitude at high temperatures; (ii) with increasing ac drive, the permittivity maximum increases, and the temperature of the maximum shifts to lower temperature; (iii) the nonlinear effect is weakened when the measurement frequency increases. The influences of increasing ac drive were found to be similar to that of decreasing frequency. It is believed that the dielectric nonlinearities of relaxors at low drives can be explained by the phase transition theory of ergodic space shrinking in succession. A Monte Carlo simulation was performed on the flips of micro polarizations at low ac drives to verify the theory.Comment: Submitted to J. Phys.: Cond. Matte

    Chandra Phase-Resolved Spectroscopy of the Crab Pulsar

    Full text link
    We present the first phase-resolved study of the X-ray spectral properties of the Crab Pulsar that covers all pulse phases. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity, even at pulse minimum. Analysis of the pulse-averaged spectrum measures interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We confirm previous findings that the line-of-sight to the Crab is underabundant in oxygen, although more-so than recently measured. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (3.33 +/-0.25) x 10**-4. Analysis of the spectrum as a function of pulse phase measures the low-energy X-ray spectral index even at pulse minimum -- albeit with large statistical uncertainty -- and we find marginal evidence for variations of the spectral index. The data are also used to set a new (3-sigma) upper limit to the temperature of the neutron star of log T(infinity) < 6.30.Comment: 20 Pages including 7 figures. Accepted for publication in the Astrophysical Journa

    Top Quark Decays into Heavy Quark Mesons

    Full text link
    For top quark decays into heavy quark mesons Ī„\Upsilon and BĖ‰cāˆ—\bar{B}_c^* , a complete calculation to the leading order both in QCD coupling constant Ī±s\alpha_s and in vv, the typical velocity of the heavy quarks inside the mesons, is performed. Relatons between the top quark mass and the decay branching ratios are studied. Comparion with the results which are obtained by using the quark frangmentation functions is also discussed. The branching ratios are consistent (within a factor of 2āˆ¼32\sim 3 ) with that obtained using fragmentation functions at mtāˆ¼150m_t\sim 150 GeV.Comment: 15 pages in LaTex form, 4 figures include

    An integrated cell-free metabolic platform for protein production and synthetic biology

    Get PDF
    Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements
    • ā€¦
    corecore