10 research outputs found

    Sea ice conditions within the Antarctic Marginal Ice Zone in summer 2016, onboard the SA Agulhas II

    No full text
    Our knowledge of sea ice variability, which contributes to the detection of the Antarctic climate change trends, stems primarily from remotely sensed information. However, sea ice in the Southern Ocean is characterized by large variability that remains unresolved and limits our confidence on the remotely sensed products. Therefore, the in situ sea ice observations presented (according to the ASPeCt protocol) provide a greater understanding of the Antarctic sea ice environment - on a local scale - and allows us to evaluate remotely sensed products

    Characteristic Contrast in Δfmin Maps of Organic Molecules Using Atomic Force Microscopy

    No full text
    Scanning tunneling microscopy and atomic force microscopy can provide detailed information about the geometric and electronic structure of molecules with submolecular spatial resolution. However, an essential capability to realize the full potential of these techniques for chemical applications is missing from the scanning probe toolbox: chemical recognition of organic molecules. Here, we show that maps of the minima of frequency shift-distance curves extracted from 3D data cubes contain characteristic contrast. A detailed theoretical analysis based on density functional theory and molecular mechanics shows that these features are characteristic for the investigated species. Structurally similar but chemically distinct molecules yield significantly different features. We find that the van der Waals and Pauli interaction, together with the specific adsorption geometry of a given molecule on the surface, accounts for the observed contrast

    Cuboidal supraparticles self-assembled from cubic CsPbBr\u3csub\u3e3\u3c/sub\u3e perovskite nanocrystals

    No full text
    \u3cp\u3eColloidal CsPbBr\u3csub\u3e3\u3c/sub\u3e nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies - instead of delocalized ones - indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.\u3c/p\u3

    Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices

    No full text
    \u3cp\u3eOriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands such as graphene, but also strong spin-orbit coupling. The two-dimensional (2D) assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in 2D metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.\u3c/p\u3
    corecore