107 research outputs found
Recommended from our members
Experience using conventional compared to ancestry-based population descriptors in clinical genomics laboratories.
Various scientific and professional groups, including the American Medical Association (AMA), American Society of Human Genetics (ASHG), American College of Medical Genetics (ACMG), and the National Academies of Sciences, Engineering, and Medicine (NASEM), have appropriately clarified that certain population descriptors, such as race and ethnicity, are social and cultural constructs with no basis in genetics. Nevertheless, these conventional population descriptors are routinely collected during the course of clinical genetic testing and may be used to interpret test results. Experts who have examined the use of population descriptors, both conventional and ancestry based, in human genetics and genomics have offered guidance on using these descriptors in research but not in clinical laboratory settings. This perspective piece is based on a decade of experience in a clinical genomics laboratory and provides insight into the relevance of conventional and ancestry-based population descriptors for clinical genetic testing, reporting, and clinical research on aggregated data. As clinicians, laboratory geneticists, genetic counselors, and researchers, we describe real-world experiences collecting conventional population descriptors in the course of clinical genetic testing and expose challenges in ensuring clarity and consistency in the use of population descriptors. Current practices in clinical genomics laboratories that are influenced by population descriptors are identified and discussed through case examples. In relation to this, we describe specific types of clinical research projects in which population descriptors were used and helped derive useful insights related to practicing and improving genomic medicine
Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice.
It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes.To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes.This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals.Genetic test results.Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms.Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%).Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes.VoRSUNY DownstateNeurologyN/
Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice
IMPORTANCE: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes.
OBJECTIVE: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes.
DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals.
EXPOSURES: Genetic test results.
MAIN OUTCOMES AND MEASURES: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms.
RESULTS: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%).
CONCLUSIONS AND RELEVANCE: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes
Utility of RNA Sequencing Analysis in the Context of Genetic Testing
Abstract
Purpose of Review
RNA analysis is beginning to be integrated into clinical laboratory genomics, and a review of its current uses and limitations is warranted. Here, we summarize the scope and utility of RNA analysis in the context of clinical genetic testing, including considerations for genetic counseling.
Recent Findings
RNA analysis is a powerful approach for interpreting some variants of uncertain significance, for analyzing splicing alterations, for providing additional functional evidence for sequence and structural variants, and for discovering novel variants. However, a review of RNA sequencing methods has noted variability in both laboratory processes and findings. Genetic counseling related to RNA analysis has to take into account nonstandardized laboratory processes, sample-type limitations, and differences in variant-interpretation outcomes.
Summary
RNA analysis is an important complement to DNA testing, although limitations still exist. Maximizing the utility of RNA analysis will require appropriate patient referrals and standardization of laboratory processes as the practice continues to expand the ability to identify and resolve molecular diagnoses.
</jats:sec
De novo duplication 11p13 involving the PAX6 gene in a patient with neonatal seizures, hypotonia, microcephaly, developmental disability and minor ocular manifestations
Platelet aggregation inhibitory activity and radical scavenging activity of Spondias mangifera Willd
The dry powder of Spondias mangifera Willd. fruits was sequentially extracted with hexane, chloroform, ethyl acetate, acetone and methanol. The extract yield increased with increase in the polarity of the solvent. The ethyl acetate extract showed potential platelet aggregation inhibitory activity with IC50 value of 0.33 mg and 0.43 mg for antagonists like collagen and ADP respectively. The methanol extract also revealed high platelet aggregation inhibition with very low IC50 value of 0.26 mg and 0.35 mg for antagonists like collagen and ADP respectively. Methanol extract showed high DPPH radical scavenging activity compared to other extracts.</jats:p
- …
