23 research outputs found
Recent Trends in In-silico Drug Discovery
A Drug designing is a process in which new leads (potential drugs) are discovered which have therapeutic benefits in diseased condition. With development of various computational tools and availability of databases (having information about 3D structure of various molecules) discovery of drugs became comparatively, a faster process. The two major drug development methods are structure based drug designing and ligand based drug designing. Structure based methods try to make predictions based on three dimensional structure of the target molecules. The major approach of structure based drug designing is Molecular docking, a method based on several sampling algorithms and scoring functions. Docking can be performed in several ways depending upon whether ligand and receptors are rigid or flexible. Hotspot grafting, is another method of drug designing. It is preferred when the structure of a native binding protein and target protein complex is available and the hotspots on the interface are known. In absence of information of three Dimensional structure of target molecule, Ligand based methods are used. Two common methods used in ligand based drug designing are Pharmacophore modelling and QSAR. Pharmacophore modelling explains only essential features of an active ligand whereas QSAR model determines effect of certain property on activity of ligand. Fragment based drug designing is a de novo approach of building new lead compounds using fragments within the active site of the protein. All the candidate leads obtained by various drug designing method need to satisfy ADMET properties for its development as a drug. In-silico ADMET prediction tools have made ADMET profiling an easier and faster process. In this review, various softwares available for drug designing and ADMET property predictions have also been listed
Effect of STAT3 inhibitor in chronic myeloid leukemia associated signaling pathway: a mathematical modeling, simulation and systems biology study
Chronic myeloid leukemia (CML) is a hematopoietic stem-cell disorder which proliferates due to abnormal growth of basophil cells. Several proangiogenic molecules have been reported to be associated in CML progression, including the hepatocyte growth factor (HGF). However, detail mechanism about the cellular distribution and function of HGF in CML is yet to be revealed. The proliferation of hematopoietic cells are regulated by some of the growth factors like interleukin 3 (IL-3), IL-6, erythropoietin, thrombopoietin, etc. In this study IL-6 pathways have been taken into consideration which induces JAK/STAT and MAPK pathways to decipher the CML progression stages. An attempt has been made to model these pathways with the help of ordinary differential equations (ODEs) and estimating unknown parameters through fminsearch optimization algorithm. Some of the specific component like STAT3, of the pathway has been analyzed in detail and their role in CML progression has been elucidated. The roles of STAT3 inhibitors into the treatment of CML have been thoroughly studied and optimum concentration of the inhibitors have been predicted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13205-015-0357-7) contains supplementary material, which is available to authorized users
Recent genetic exchanges and admixture shape the genome and population structure of the zoonotic pathogen Cryptosporidium parvum
Cryptosporidium parvum is a globally distributed zoonotic pathogen and a major cause of diarrhoeal disease in humans and ruminants. The parasite's life cycle comprises an obligatory sexual phase, during which genetic exchanges can occur between previously isolated lineages. Here, we compare 32 whole genome sequences from human- and ruminant-derived parasite isolates collected across Europe, Egypt and China. We identify three strongly supported clusters that comprise a mix of isolates from different host species, geographic origins, and subtypes. We show that: (1) recombination occurs between ruminant isolates into human isolates; (2) these recombinant regions can be passed on to other human subtypes through gene flow and population admixture; (3) there have been multiple genetic exchanges, and most are probably recent; (4) putative virulence genes are significantly enriched within these genetic exchanges, and (5) this results in an increase in their nucleotide diversity. We carefully dissect the phylogenetic sequence of two genetic exchanges, illustrating the long-term evolutionary consequences of these events. Our results suggest that increased globalization and close human-animal contacts increase the opportunity for genetic exchanges between previously isolated parasite lineages, resulting in spillover and spillback events. We discuss how this can provide a novel substrate for natural selection at genes involved in host–parasite interactions, thereby potentially altering the dynamic coevolutionary equilibrium in the Red Queens arms race
Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution
Cryptosporidiosis is a major global health problem and a primary cause of diarrhoea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic C. hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes (GIPVs), including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a coevolutionary arms race with the host. Lastly, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, may be driving evolution of more virulent C. hominis variants
VIVID: A web application for variant interpretation and visualization in multi-dimensional analyses
Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies
Comparative genomics revealed adaptive admixture in Cryptosporidium hominis in Africa
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host–parasite coevolution
Population genetics and evolutionary epidemiology of diarrhoeal pathogen - Cryptosporidium
© 2022 Swapnil TichkuleDiarrhoeal disease remains the second leading cause of morbidity in children worldwide. Cryptosporidium are the second leading cause of diarrhoea (cryptosporidiosis) and are transmitted by the faecal-oral route (human to human, animal to human) or via ingestion of contaminated food or water. The infection is particularly severe among young and malnourished children and immunocompromised individuals. More than 90% of human cryptosporidiosis is caused by zoonotic (C. parvum) and anthroponotic (C. hominis) species.
The epidemiology of human cryptosporidiosis varies globally with geography, socioeconomics and infecting species. Moreover, close human-animal contact in modern husbandry practices and increased globalisation have dramatically altered these parasites' evolution. Understanding this is critical to implementing control strategies and managing the risk of infectious diseases. However, this largely relies on studies driven by single- or multi-locus genotyping that cannot accurately resolve the population structure required to track and mitigate transmission. In addition, the recombination potential of this obligatory sexual parasite and its consequences on population genetic structures, transmission dynamics and taxonomy of Cryptosporidium species has not been explored yet.
This doctoral thesis aims to improve understanding of population epidemiology by determining population structures and transmission dynamics in different environments and settings and investigating the potential influence of globalisation and human activities. In this thesis, I undertook a global population genomic study of the predominant human-infectious C. hominis and C. parvum. I explored the implications of these data by using cutting edge population genetics and evolutionary genomics techniques to better understand the diversity, transmission, virulence, evolution and biology of Cryptosporidium species in different settings.
In high transmission countries of Africa where C. hominis is predominant, I show that despite strong geographical segregation, human migration underpins the spread of C. hominis in Africa through recombination. I discovered reproductively isolated sub-speciation in C. hominis driven by socioeconomic factors in the global analysis. The evidence of recent recombination between the two illustrates the transmission of virulent subtypes from developed to developing countries. Furthermore, I demonstrate that close animal-human contact increased the risk of recombination between ruminant and human isolates of C. parvum, resulting in spillover events. Lastly, to determine the functional relevance of genomic variants generated by these population genetics studies, I developed a novel web-based tool (VIVID) to allow the visualisation of genomic mutations for their impact on protein structure, function and evolution.
The studies undertaken in this doctoral thesis provide novel insights into the population structures of C. hominis and C. parvum at local and global scales based on genomic sequencing. The recombination analysis revealed robust identification and dissection of recombination events to deconvolute transmission patterns at geographical scales and among hosts. These research findings will aid in identifying the causative agent and tracking the source of infection, and they can be used in the development of surveillance programs and outbreak investigations. Furthermore, the results show how human-mediated gene flow might provide a new substrate for Cryptosporidium evolution and host expansion, signalling a threat to (re)emerging infectious diseases and emphasising the importance of a One Health approach to reduce disease burden
Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization
Pore-forming toxins (PFTs) are typically produced as water-soluble monomers, which upon interacting with target cells assemble into transmembrane oligomeric pores. Vibrio parahaemolyticus thermostable direct hemolysin (TDH) is an atypical PFT that exists as a tetramer in solution, prior to membrane binding. The TDH structure highlights a core β-sandwich domain similar to those found in the eukaryotic actinoporin family of PFTs. However, the TDH structure harbors an extended C-terminal region (CTR) that is not documented in the actinoporins. This CTR remains tethered to the β-sandwich domain through an intra-molecular disulphide bond. Part of the CTR is positioned at the inter-protomer interface in the TDH tetramer. Here we show that the truncation, as well as mutation, of the CTR compromise tetrameric assembly, and the membrane-damaging activity of TDH. Our study also reveals that intra-protomer disulphide bond formation during the folding/assembly process of TDH restrains the CTR to mediate its participation in the formation of inter-protomer contact, thus facilitating TDH oligomerization. However, once tetramerization is achieved, disruption of the disulphide bond does not affect oligomeric assembly. Our study provides critical insights regarding the regulation of the oligomerization mechanism of TDH, which has not been previously documented in the PFT family.</jats:p
