29 research outputs found

    A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation

    Get PDF
    High-throughput technologies revealed new categories of genes, including the long noncoding RNAs (lncRNAs), involved in the pathogenesis of human disease; however, the role of lncRNAs in the ulcerative colitis (UC) has not been evaluated. Gene expression profiling was used to develop lncRNA signatures in UC samples. Jurkat T cells were activated by PMA/ionomycin subsequently interferon- (IFNG) and tumor necrosis factor (TNF)- protein levels were assessed by ELISA. Anti-sense molecules were designed to block IFNG-AS1 expression. A unique set of lncRNAs was differentially expressed between UC and control samples. Of these, IFNG-AS1 was among the highest statistically significant lncRNAs (fold change: 5.27, P value: 7.07E-06). Bioinformatic analysis showed that IFNG-AS1 was associated with the IBD susceptibility loci SNP rs7134599 and its genomic location is adjacent to the inflammatory cytokine IFNG. In mouse models of colitis, active colitis samples had increased colonic expression of this lncRNA. Utilizing the Jurkat T cell model, we found IFNG-AS1 to positively regulate IFNG expression. Novel lncRNA signatures differentiate UC patients with active disease, patients in remission, and control subjects. A subset of these lncRNAs was found to be associated with the clinically validated IBD susceptibility loci. IFNG-AS1 was one of these differentially expressed lncRNAs in UC patients and found to regulate the key inflammatory cytokine, IFNG, in CD4 T cells. Taking these findings together, our study revealed novel lncRNA signatures deregulated in UC and identified IFNG-AS1 as a novel regulator of IFNG inflammatory responses, suggesting the potential importance of noncoding RNA mechanisms on regulation of inflammatory bowel disease-related inflammatory responses

    The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    Get PDF
    Background & Aims: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis responses have been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods: Rome III+ IBS patients and healthy controls underwent CRF (1μg/kg ovine) and ACTH (250μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n=116). GR mRNA levels were measured using quantitative PCR (n=143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results: There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p= 0.009), but in women AUC was blunted in IBS(p=0.006). Men also had reduced GR mRNA expression (p=0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion: This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response

    Identification of Spinal Cord MicroRNA and Gene Signatures in a Model of Chronic Stress-Induced Visceral Hyperalgesia in Rat.

    No full text
    IntroductionAnimal studies have shown that stress could induce epigenetic and transcriptomic alterations essential in determining the balance between adaptive or maladaptive responses to stress. We tested the hypothesis that chronic stress in rats deregulates coding and non-coding gene expression in the spinal cord, which may underline neuroinflammation and nociceptive changes previously observed in this model.MethodsMale Wistar rats were exposed to daily stress or handled, for 10 days. At day 11, lumbar spinal segments were collected and processed for mRNA/miRNA isolation followed by expression profiling using Agilent SurePrint Rat Exon and Rat miRNA Microarray platforms. Differentially expressed gene lists were generated using the dChip program. Microarrays were analyzed using the Ingenuity Pathways Analysis (IPA) tool from Ingenuity Systems. Multiple methods were used for the analysis of miRNA-mRNA functional modules. Quantitative real time RT-PCR for Interleukin 6 signal transducer (gp130), the Signal Transducer And Activator Of Transcription 3 (STAT3), glial fibrillary acidic protein and mir-17-5p were performed to confirm levels of expression.ResultsGene network analysis revealed that stress deregulated different inflammatory (IL-6, JAK/STAT, TNF) and metabolic (PI3K/AKT) signaling pathways. MicroRNA array analysis revealed a signature of 39 deregulated microRNAs in stressed rats. MicroRNA-gene network analysis showed that microRNAs are regulators of two gene networks relevant to inflammatory processes. Specifically, our analysis of miRNA-mRNA functional modules identified miR-17-5p as an important regulator in our model. We verified miR-17-5p increased expression in stress using qPCR and in situ hybridization. In addition, we observed changes in the expression of gp130 and STAT3 (involved in intracellular signaling cascades in response to gp130 activation), both predicted targets for miR-17-5p. A modulatory role of spinal mir17-5p in the modulation of visceral sensitivity was confirmed in vivo.ConclusionUsing an integrative high throughput approach, our findings suggest a link between miR-17-5p increased expression and gp130/STAT3 activation providing new insight into the possible mechanisms mediating the effect of chronic stress on neuroinflammation in the spinal cord
    corecore