8,105 research outputs found

    Computer programs for prediction of structural vibrations due to fluctuating pressure environments. Volume 1 - Theoretical analyses Final report

    Get PDF
    Theoretical analyses for computer program to calculate random vibrations of reinforced rectangular cylindrical panels in fluctuating pressure environmen

    Simple pressure gauge for uranium hexafluoride

    Get PDF
    A sensitive detector and pressure gauge for uranium hexafluoride in high‐vacuum systems is described. Negative surface ionization of UF_6 occurs on ribbon filaments operated at temperatures too low for electron emission to be significant. The ion current measured on a cylindrical collector surrounding the filament assembly varies regularly with UF_6 pressure below 10^(−3) Torr. Different filament materials are considered, including rhenium, thoriated tungsten, and platinum. Rhenium is found to be the most satisfactory material for operation of diode emitters as a pressure gauge. Gauge constants (in A Torr^(−1)) are derived from comparing negative surface ionization currents with the response of a capacitance manometer and are shown to be independent of temperature within a reasonable operating range. The effects of exposing the rhenium filament to various gases is considered, and it is shown that brief exposure to acetylene substantially improves the operating characteristics of the gauge

    Landau Damping in a Turbulent Setting

    Full text link
    To address the problem of Landau damping in kinetic turbulence, the forcing of the linearized Vlasov equation by a stationary random source is considered. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this potentially resolves an energy paradox that arises in the application of critical balance to a kinetic turbulence cascade.Comment: Introduction significantly expanded to help contextualize results. Calculations unchange

    Four-quark state in QCD

    Get PDF
    The spectra of some 0++ four-quark states, which are composed of \bar qq pairs, are calculated in QCD. The light four-quark states are calculated using the traditional sum rules while four-quark states containing one heavy quark are computed in HQET. For constructing the interpolating currents, different couplings of the color and spin inside the \bar qq pair are taken into account. It is found that the spin and color combination has little effect on the mass of the four-quark states.Comment: 10 pages, 4 ps figures, Late

    Maternal inflammation at 0.7 gestation in ewes leads to intrauterine growth restriction and impaired glucose metabolism in offspring at 30 d of age

    Get PDF
    Fetal programming associated with intrauterine growth restriction (IUGR) leads to lifelong deficits in growth and metabolic function (Hales and Barker, 2013). IUGR arises when fetuses respond to poor in utero conditions by developing adaptations that repartition nutrients to critical tissues and away from skeletal muscle (Yates et al., 2012, 2018). This fetal programming is beneficial in utero but leads to persistent reductions in muscle mass and glucose homeostasis in offspring (DeFronzo et al., 1981). Recent studies by our laboratory in sheep and rats demonstrate that maternal inflammation during gestation induces fetal inflammatory adaptations that impair growth and disrupt muscle glucose metabolism (Cadaret et al., 2017, 2018). IUGR fetal skeletal muscle exhibits indicators of enhanced inflammatory sensitivity, which could disrupt glucose uptake and oxidation (Yates et al., 2016; Cadaret et al., 2018). Enhanced inflammatory responsiveness would help explain growth and metabolic deficits observed in IUGR offspring. We hypothesize that fetal programming induced by maternal inflammation persists in offspring and contributes to impaired growth and glucose metabolism at 30 d. Therefore, the objective of this study was to determine whether sustained maternal inflammation induced by bacterial endotoxin at 0.7 gestation leads to fetal programming that contributes to deficits in growth and glucose metabolism in offspring

    Conductivity in Jurkat cell suspension after ultrashort electric pulsing

    No full text
    Ultrashort electric pulses applied to similar cell lines such as Jurkat and HL-60 cells can produce markedly different results , which have been documented extensively over the last few years. We now report changes in electrical conductivity of Jurkat cells subjected to traditional electroporation pulses (50 ms pulse length) and ultrashort pulses (10 ns pulse length) using time domain dielectric spectroscopy (TDS). A single 10 ns, 150 kV/cm pulse did not noticeably alter suspension conductivity while a 50 ms, 2.12 kV/cm pulse with the same energy caused an appreciable conductivity rise. These results support the hypothesis that electroporation pulses primarily interact with the cell membrane and cause conductivity rises due to ion transport from the cell to the external media, while pulses with nanosecond duration primarily interact with the membranes of intracellular organelles. However, multiple ultrashort pulses have a cumulative effect on the plasma membrane, with five pulses causing a gradual rise in conductivity up to ten minutes post-pulsing

    Dispersion Relations for Bernstein Waves in a Relativistic Pair Plasma

    Full text link
    A fully relativistic treatment of Bernstein waves in an electron-positron pair plasma has remained too formidable a task owing to the very complex nature of the problem. In this article, we perform contour integration of the dielectric response function and numerically compute the dispersion curves for a uniform, magnetized, relativistic electron-positron pair plasma. The behavior of the dispersion solution for several cases with different plasma temperatures is highlighted. In particular, we find two wave modes that exist only for large wavelengths and frequencies similar to the cyclotron frequency in a moderately relativistic pair plasma. The results presented here have important implications for the study of those objects where a hot magnetized electron-positron plasma plays a fundamental role in generating the observed radiation.Comment: 8 pages, 8 figures, Accepted for publication by Phys. Rev. E with minor change

    Unquenching the Quark Model and Screened Potentials

    Full text link
    The low-lying spectrum of the quark model is shown to be robust under the effects of `unquenching'. In contrast, the use of screened potentials is shown to be of limited use in models of hadrons. Applications to unquenching the lattice Wilson loop potential and to glueball mixing in the adiabatic hybrid spectrum are also presented.Comment: 6 pages, 3 ps figures, revtex. Version to appear in J. Phys.

    Convergence Acceleration for Multistage Time-Stepping Schemes

    Get PDF
    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four

    Body composition estimated by bioelectrical impedance analyses is diminished by prenatal stress in neonatal lambs and by heat stress in feedlot wethers

    Get PDF
    Body composition correlates to carcass value in livestock, which makes the ability to accurately estimate body composition in the live animal beneficial (Berg and Marchello, 1994). Bioelectrical impedance analysis (BIA) is a clinical tool used to assess body composition in humans (Lukaski et al., 1985), but its use in livestock has been minimal. Lean and fat content contribute to profitability for livestock producers, and poor body composition can be caused by stress that occurs either during in utero development (De Blasio et al., 2007) or during postnatal growth (Boyd et al., 2015). Maternal hyperthermia-induced placental insufficiency (Brown et al., 2015) and sustained maternal inflammation (Cadaret et al., 2018) are two established causes of intrauterine growth restriction (IUGR). IUGR-born animals are characterized by asymmetrical growth restriction that alters lifelong body composition due to impaired muscle growth capacity (Yates et al., 2018). In addition, acute heat stress during periods of peak postnatal growth can alter body composition in livestock (Boyd et al., 2015). We postulate that BIA can detect these changes in the live animal. Thus, the objective of this study was to determine whether BIA measurements can predict changes to body composition in live neonatal lambs exposed to intrauterine stress and in heat-stressed feedlot lambs
    • 

    corecore