808 research outputs found

    The Cost of Dispersal: Predation as a Function of Movement and Site Familiarity in Ruffed Grouse

    Get PDF
    Ecologists often assume that dispersing individuals experience increased predation risk owing to increased exposure to predators while moving. To test the hypothesis that predation risk is a function of movement distance or rate of movement, we used radio-telemetry data collected from 193 ruffed grouse (Bonasa umbellus) during 1996–1999 in southeastern Ohio. Cox’s proportional hazards model was used to examine whether the risk of predation was affected by the rate of movement and site familiarity. We found evidence indicating that increased movement rates may increase the risk of predation for adult birds but not juveniles. We also found juvenile and adult birds inhabiting unfamiliar space were consistently at a much higher risk of predation (three to 7.5 times greater) than those in familiar space. Our results indicate that although movement itself may have some effect on the risk of being preyed upon, moving through unfamiliar space has a much greater effect on risk for ruffed grouse. This supports the hypothesis that increased predation risk may be an important cost of dispersal for birds.This work was funded by the Ohio Department of Natural Resources, Division of Wildlife and supported by the Department of Evolution, Ecology, and Organismal Biology and the Aquatic Ecology Laboratory at the Ohio State University

    Application of the Instrumental Inequalities to a Mendelian Randomization Study With Multiple Proposed Instruments

    Get PDF
    BACKGROUND: Investigators often support the validity of Mendelian randomization (MR) studies, an instrumental variable approach proposing genetic variants as instruments, via. subject matter knowledge. However, the instrumental variable model implies certain inequalities, offering an empirical method of falsifying (but not verifying) the underlying assumptions. Although these inequalities are said to detect only extreme assumptio

    Intellectual Property and Public Health – A White Paper

    Get PDF
    On October 26, 2012, the University of Akron School of Law’s Center for Intellectual Property and Technology hosted its Sixth Annual IP Scholars Forum. In attendance were thirteen legal scholars with expertise and an interest in IP and public health who met to discuss problems and potential solutions at the intersection of these fields. This report summarizes this discussion by describing the problems raised, areas of agreement and disagreement between the participants, suggestions and solutions made by participants and the subsequent evaluations of these suggestions and solutions. Led by the moderator, participants at the Forum focused generally on three broad questions. First, are there alternatives to either the patent system or specific patent doctrines that can provide or help provide sufficient incentives for health-related innovation? Second, is health information being used proprietarily and if so, is this type of protection appropriate? Third, does IP conflict with other non-IP values that are important in health and how does or can IP law help resolve these conflicts? This report addresses each of these questions in turn

    Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder

    Get PDF
    Background: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. Methods: and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. Conclusions: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy

    Repair of a Mutation Disrupting the Guinea Pig Cytomegalovirus Pentameric Complex Acquired during Fibroblast Passage Restores Pathogenesis in Immune-Suppressed Guinea Pigs and in the Context of Congenital Infection

    Get PDF
    ABSTRACT Guinea pig cytomegalovirus (GPCMV) provides a valuable model for congenital cytomegalovirus transmission. Salivary gland (SG)-passaged stocks of GPCMV are pathogenic, while tissue culture (TC) passage in fibroblasts results in attenuation. Nonpathogenic TC-derived virus N13R10 (cloned as a bacterial artificial chromosome [BAC]) has a 4-bp deletion that disrupts GP129 , which encodes a subunit of the GPCMV pentameric complex (PC) believed to govern viral entry into select cell types, and GP130 , an overlapping open reading frame (ORF) of unknown function. To determine if this deletion contributes to attenuation of N13R10, markerless gene transfer in Escherichia coli was used to construct virus r129, a variant of N13R10 in which the 4-bp deletion is repaired. Virions from r129 were found to contain GP129 as well as two other PC subunit proteins, GP131 and GP133, whereas these three PC subunits were absent from N13R10 virions. Replication of r129 in fibroblasts appeared unaltered compared to that of N13R10. However, following experimental challenge of immunocompromised guinea pigs, r129 induced significant weight loss, longer duration of viremia, and dramatically higher (up to 1.5 × 10 6 -fold) viral loads in blood and end organs compared to N13R10. In pregnant guinea pigs, challenge with doses of r129 virus of ≥5 × 10 6 PFU resulted in levels of maternal viremia, congenital transmission, pup viral loads, intrauterine growth restriction, and pup mortality comparable to that induced by pathogenic SG virus, although higher doses of r129 were required. These results suggest that the GP129-GP130 mutation is a significant contributor to attenuation of N13R10, likely by abrogating expression of a functional PC. IMPORTANCE Tissue culture adaptation of cytomegaloviruses rapidly selects for mutations, deletions, and rearrangements in the genome, particularly for viruses passaged in fibroblast cells. Some of these mutations are focused in the region of the genome encoding components of the pentameric complex (PC), in particular homologs of human cytomegalovirus (HCMV) proteins UL128, UL130, and UL131A. These mutations can attenuate the course of infection when the virus is reintroduced into animals for vaccine and pathogenesis studies. This study demonstrates that a deletion that arose during the process of tissue culture passage can be repaired, with subsequent restoration of pathogenicity, using BAC-based mutagenesis. Restoration of pathogenicity by repair of a frameshift mutation in GPCMV gene GP129 using this approach provides a valuable genetic platform for future studies using the guinea pig model of congenital CMV infection

    Intellectual Property and Public Health – A White Paper

    Get PDF
    On October 26, 2012, the University of Akron School of Law’s Center for Intellectual Property and Technology hosted its Sixth Annual IP Scholars Forum. In attendance were thirteen legal scholars with expertise and an interest in IP and public health who met to discuss problems and potential solutions at the intersection of these fields. This report summarizes this discussion by describing the problems raised, areas of agreement and disagreement between the participants, suggestions and solutions made by participants and the subsequent evaluations of these suggestions and solutions. Led by the moderator, participants at the Forum focused generally on three broad questions. First, are there alternatives to either the patent system or specific patent doctrines that can provide or help provide sufficient incentives for health-related innovation? Second, is health information being used proprietarily and if so, is this type of protection appropriate? Third, does IP conflict with other non-IP values that are important in health and how does or can IP law help resolve these conflicts? This report addresses each of these questions in turn

    Dysferlin and Myoferlin Regulate Transverse Tubule Formation and Glycerol Sensitivity

    Get PDF
    Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy
    • …
    corecore