49 research outputs found

    Combinatorial Solutions Providing Improved Security for the Generalized Russian Cards Problem

    Get PDF
    We present the first formal mathematical presentation of the generalized Russian cards problem, and provide rigorous security definitions that capture both basic and extended versions of weak and perfect security notions. In the generalized Russian cards problem, three players, Alice, Bob, and Cathy, are dealt a deck of nn cards, each given aa, bb, and cc cards, respectively. The goal is for Alice and Bob to learn each other's hands via public communication, without Cathy learning the fate of any particular card. The basic idea is that Alice announces a set of possible hands she might hold, and Bob, using knowledge of his own hand, should be able to learn Alice's cards from this announcement, but Cathy should not. Using a combinatorial approach, we are able to give a nice characterization of informative strategies (i.e., strategies allowing Bob to learn Alice's hand), having optimal communication complexity, namely the set of possible hands Alice announces must be equivalent to a large set of t−(n,a,1)t-(n, a, 1)-designs, where t=a−ct=a-c. We also provide some interesting necessary conditions for certain types of deals to be simultaneously informative and secure. That is, for deals satisfying c=a−dc = a-d for some d≥2d \geq 2, where b≥d−1b \geq d-1 and the strategy is assumed to satisfy a strong version of security (namely perfect (d−1)(d-1)-security), we show that a=d+1a = d+1 and hence c=1c=1. We also give a precise characterization of informative and perfectly (d−1)(d-1)-secure deals of the form (d+1,b,1)(d+1, b, 1) satisfying b≥d−1b \geq d-1 involving d−(n,d+1,1)d-(n, d+1, 1)-designs

    Extended Combinatorial Constructions for Peer-to-peer User-Private Information Retrieval

    Get PDF
    We consider user-private information retrieval (UPIR), an interesting alternative to private information retrieval (PIR) introduced by Domingo-Ferrer et al. In UPIR, the database knows which records have been retrieved, but does not know the identity of the query issuer. The goal of UPIR is to disguise user profiles from the database. Domingo-Ferrer et al.\ focus on using a peer-to-peer community to construct a UPIR scheme, which we term P2P UPIR. In this paper, we establish a strengthened model for P2P UPIR and clarify the privacy goals of such schemes using standard terminology from the field of privacy research. In particular, we argue that any solution providing privacy against the database should attempt to minimize any corresponding loss of privacy against other users. We give an analysis of existing schemes, including a new attack by the database. Finally, we introduce and analyze two new protocols. Whereas previous work focuses on a special type of combinatorial design known as a configuration, our protocols make use of more general designs. This allows for flexibility in protocol set-up, allowing for a choice between having a dynamic scheme (in which users are permitted to enter and leave the system), or providing increased privacy against other users.Comment: Updated version, which reflects reviewer comments and includes expanded explanations throughout. Paper is accepted for publication by Advances in Mathematics of Communication

    Sok: Security and privacy in implantable medical devices and body area networks.

    Get PDF
    Abstract-Balancing security, privacy, safety, and utility is a necessity in the health care domain, in which implantable medical devices (IMDs) and body area networks (BANs) have made it possible to continuously and automatically manage and treat a number of health conditions. In this work, we survey publications aimed at improving security and privacy in IMDs and health-related BANs, providing clear definitions and a comprehensive overview of the problem space. We analyze common themes, categorize relevant results, and identify trends and directions for future research. We present a visual illustration of this analysis that shows the progression of IMD/BAN research and highlights emerging threats. We identify three broad research categories aimed at ensuring the security and privacy of the telemetry interface, software, and sensor interface layers and discuss challenges researchers face with respect to ensuring reproducibility of results. We find that while the security of the telemetry interface has received much attention in academia, the threat of software exploitation and the sensor interface layer deserve further attention. In addition, we observe that while the use of physiological values as a source of entropy for cryptographic keys holds some promise, a more rigorous assessment of the security and practicality of these schemes is required

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans

    Get PDF
    BACKGROUND: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. METHODS: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. RESULTS: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. CONCLUSIONS: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971
    corecore