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Abstract

We present the first formal mathematical presentation of the generalized Russian cards
problem, and provide rigorous security definitions that capture both basic and extended versions
of weak and perfect security notions. In the generalized Russian cards problem, three players,
Alice, Bob, and Cathy, are dealt a deck of n cards, each given a, b, and c cards, respectively.
The goal is for Alice and Bob to learn each other’s hands via public communication, without
Cathy learning the fate of any particular card. The basic idea is that Alice announces a set
of possible hands she might hold, and Bob, using knowledge of his own hand, should be able
to learn Alice’s cards from this announcement, but Cathy should not. Using a combinatorial
approach, we are able to give a nice characterization of informative strategies (i.e., strategies
allowing Bob to learn Alice’s hand), having optimal communication complexity, namely the
set of possible hands Alice announces must be equivalent to a large set of t − (n, a, 1)-designs,
where t = a − c. We also provide some interesting necessary conditions for certain types of
deals to be simultaneously informative and secure. That is, for deals satisfying c = a − d for
some d ≥ 2, where b ≥ d− 1 and the strategy is assumed to satisfy a strong version of security
(namely perfect (d − 1)-security), we show that a = d + 1 and hence c = 1. We also give a
precise characterization of informative and perfectly (d− 1)-secure deals of the form (d+ 1, b, 1)
satisfying b ≥ d− 1 involving d− (n, d+ 1, 1)-designs.

1 Introduction

Suppose X is a deck of n cards, and we have three participants, Alice, Bob and Cathy. Let
a+ b+ c = n and suppose that Alice is dealt a hand of a cards, Bob is dealt a hand of b cards and
Cathy is dealt a hand of c cards. These hands are random and dealt by some entity external to the
scheme. We denote Alice’s hand by HA, Bob’s hand by HB and Cathy’s hand by HC . Of course it
must be the case that HA ∪HB ∪HC = X. We refer to this as an (a, b, c)-deal of the cards.

For a positive integer t, let
(
X
t

)
denote the set of

(
n
t

)
t-subsets of X. An announcement by

Alice A is a subset of
(
X
a

)
. It is required that when Alice makes an announcement A, the hand

she holds is one of the a-subsets in A. The goal of the scheme is that, after a deal has taken place
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and Alice has made an announcement, Bob should be able to determine Alice’s hand, but Cathy
should not be able to determine if Alice holds any particular card not held by Cathy. These notions
will be formalized as we proceed. We remark that we focus on the scenario of Bob learning Alice’s
hand, although the original version of this problem is for Bob and Alice to learn each other’s hand.
We omit the latter case, since for any protocol whereby Bob may learn Alice’s hand, Bob may
then announce Cathy’s hand publicly. This second step provides sufficient information for Alice to
determine Bob’s hand, without giving Cathy any more information than she previously had.

This problem was first introduced in the case (a, b, c) = (3, 3, 1) in the 2000 Moscow Mathematics
Olympiad. Since then, there have been numerous papers investigating the problem (called the
Russian cards problem) and generalizations of it. Some are interested in card deal protocols that
allow players to agree on a common secret without a given eavesdropper being able to determine
this secret value. This area of research is especially interesting in terms of possible applications to
key generation; see, for example [10, 11, 12, 13, 14, 17, 16, 2]. Others are concerned with analyzing
variations of the problem using epistemic logic [18, 19, 20, 7]. Duan and Yang [9] and He and
Duan [15] consider a special generalization, with n − 1 players each dealt n cards, and one player
(the intruder) dealt one card; the authors give an algorithm by which a dealer, acting as a trusted
third party, can construct announcements for each player. Recently, there have been some papers
that take a combinatorial approach [1, 3, 2, 4], which we discuss in some detail in Section 5.

We take a combinatorial point of view motivated by cryptographic considerations. To be spe-
cific, we provide definitions based on security conditions in the unconditionally secure framework,
phrased in terms of probability distributions regarding information available to the various players
(analogous to Shannon’s definitions relating to perfect secrecy of a cryptosystem). In particular, we
provide a formal mathematical presentation of the generalized Russian cards problem. We intro-
duce rigorous mathematical definitions of security, which in turn allows for systematic and thorough
analysis of proposed protocols. We then give necessary conditions and provide constructions for
schemes that satisfy the relevant definitions. Here there is a natural interplay with combinatorics.

1.1 Overview of Contributions

The main contributions of our work are as follows:

• We provide a formal mathematical presentation of the generalized Russian Cards problem.
In particular, we define an announcement strategy for Alice, which designates a probability
distribution on a fixed set of possible announcements A1,A2, . . . ,Am Alice can make. In
keeping with standard practice in cryptography (i.e., Kerckhoff’s principle), we assume that
Alice’s announcement strategy is public knowledge. Security through obscurity is not consid-
ered an effective security method, as secrets are difficult to keep; providing security under the
assumption the adversary has full knowledge of the set-up of the given scheme is therefore
the goal. This allows us to define the communication complexity of the protocol to be log2m
bits, since Alice need only broadcast the index i of her chosen announcement, which is an
integer between 1 and m. In order to minimize the communication complexity of the scheme,
our goal will be to minimize m, the number of possible announcements.

• We distinguish between deterministic strategies, in which the hand HA held by Alice uniquely
determines the index i that she will broadcast, and non-deterministic, possibly even biased
announcement strategies. We are especially interested in strategies with uniform probability
distributions, which we will refer to as equitable.
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• We examine necessary and sufficient conditions for a strategy to be informative for Bob, i.e.
strategies that allow Bob to determine Alice’s hand. In particular, we give a lower bound on
the communication complexity m for informative strategies and provide a nice combinatorial
characterization of strategies that meet this bound, which we term optimal strategies.

• We provide the first formal security definitions that account for both weak and perfect security
in an unconditionally secure framework. We remark that current literature focuses on weak
security. In addition, we provide simpler, but equivalent combinatorial security conditions
that apply when Alice’s strategy is equitable. Here weak and perfect security are defined
with respect to individual cards. If a scheme satisfies weak security (which we will term weak
1-security), Cathy should not be able to say whether a given card is held by Alice or Bob; if a
scheme satisfies perfect security (which we will term perfect 1-security), each card is equally
likely to be held by Alice.

• We use constructions and results from the field of combinatorial designs to explore strategies
that are simultaneously informative and perfectly secure; this is especially useful for the case
c = 1. In particular, we analyze the case c = a − 2 in detail, and show that strategies for
(a, b, a− 2)-deals that are simultaneously informative and perfectly secure must satisfy c = 1.
We also show a precise characterization between Steiner triple systems and (3, n−4, 1)-deals.

• We generalize our notions of weak and perfect security, which focus on the probability that
individual cards are held by Alice, and consider instead the probability that a given set of
cards (of cardinality less than or equal to a) is held by Alice. We consider deals satisfying
c = a− d and achieve parallel results to the c = a− 2 case.

1.2 Preliminary Notation and Examples

Alice will choose a set of announcements, say A1,A2, . . . ,Am such that every HA ∈
(
X
a

)
is in at least

one of the m announcements. For HA ∈
(
X
a

)
, define g(HA) = {i : HA ∈ Ai}. Alice’s announcement

strategy, or more simply, strategy, consists of a probability distribution pHA on g(HA), for every
HA ∈

(
X
a

)
. The set of announcements and probability distributions are fixed ahead of time and they

are public knowledge. We will use the phrase (a, b, c)-strategy to denote a strategy for an (a, b, c)-
deal. In addition, we will assume without loss of generality that pHA(i) > 0 for all i ∈ g(HA). To
see this, note that if pHA(i) = 0 for some HA ∈

(
X
a

)
and i ∈ g(HA), this means Alice will never

choose Ai when she holds HA. But since the set of announcements and probability distributions
are public knowledge, Cathy also knows this, so there is no reason to have included HA in the
announcement Ai.

When Alice is dealt a hand HA ∈
(
X
a

)
, she randomly chooses an index i ∈ g(HA) according

to the probability distribution pHA . Alice broadcasts the integer i to specify her announcement
Ai. Because the set of announcements and probability distributions are fixed and public, the only
information that is broadcast by Alice is the index i, which is an integer between 1 and m. Therefore
we define the communication complexity of the protocol to be log2m bits. In order to minimize the
communication complexity of the scheme, our goal will be to minimize m, the number of possible
announcements.

If |g(HA)| = 1 for every HA, then we have a deterministic scheme, because the hand HA held
by Alice uniquely determines the index i that she will broadcast. That is to say, in a deterministic
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Figure 1: A deterministic (3, 3, 1)-strategy having a set of six possible announcements

i Ai
1 {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {0, 4, 5}, {1, 5, 6}, {0, 2, 6}

2 {0, 2, 3}, {1, 3, 4}, {2, 4, 5}, {3, 5, 6}, {0, 4, 6}, {0, 1, 5}, {1, 2, 6}

3 {0, 2, 4}, {0, 3, 5}, {1, 2, 3}, {0, 1, 6}, {1, 4, 5}, {2, 5, 6}

4 {0, 1, 2}, {2, 3, 4}, {4, 5, 6}, {1, 3, 5}, {0, 3, 6}

5 {1, 2, 5}, {0, 5, 6}, {1, 4, 6}, {0, 3, 4}, {2, 3, 6}

6 {3, 4, 5}, {0, 1, 4}, {0, 2, 5}, {2, 4, 6}, {1, 3, 6}

scheme, for any given hand, there is only one possible announcement that is permitted by the given
strategy.

More generally, suppose there exists a constant γ such that |g(HA)| = γ for every HA. Further,
suppose that every probability distribution pHA is uniform, i.e., pHA(i) = 1/γ for every HA and for
every i ∈ g(HA). We refer to such a strategy as a γ-equitable strategy. A deterministic scheme is
just a 1-equitable strategy.

Example 1.1. Let X = {0, . . . , 6}. Figure 1 presents a partition of
(
X
3

)
that is due to Charlie

Colbourn and Alex Rosa (private communication). This yields a deterministic (3, 3, 1)-strategy
having m = 6 possible announcements.

Example 1.2. Let X = {0, . . . , 6}. In Figure 2, we present a set of ten announcements found by
Don Kreher (private communication). It can be verified that every 3-subset of X occurs in exactly
two of these announcements. Therefore we have a 2-equitable (3, 3, 1)-strategy.

1.3 Organization of the Paper

In Section 2, we study and define the notions of informative, weakly 1-secure, and perfectly 1-
secure strategies. In Section 3, we explore strategies that are simultaneously informative and either
weakly or perfectly 1-secure, and include an analysis of perfectly 1-secure strategies with c = a− 2
in Section 3.1. We present a generalization of the notions of weak and perfect 1-security and analyze
the case of perfectly (d − 1)-secure strategies satisfying c = a − d in Section 4. We conclude in
Section 6.

2 Informative and Secure Strategies

2.1 Strategies that are Informative for Bob

Let’s first consider an (a, b, c)-deal from Bob’s point of view, after hearing Alice’s announcement.
Suppose that HB ∈

(
X
b

)
and i ∈ {1, . . . ,m}. Define

P(HB, i) = {HA ∈ Ai : HA ∩HB = ∅}.
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Figure 2: An equitable (3, 3, 1)-strategy having a set of ten possible announcements

i Ai
1 {2, 5, 6}, {2, 3, 4}, {1, 4, 5}, {1, 3, 6}, {0, 4, 6}, {0, 3, 5}, {0, 1, 2}

2 {2, 5, 6}, {2, 3, 4}, {1, 4, 6}, {1, 3, 5}, {0, 4, 5}, {0, 3, 6}, {0, 1, 2}

3 {3, 4, 5}, {2, 4, 6}, {1, 3, 6}, {1, 2, 5}, {0, 5, 6}, {0, 2, 3}, {0, 1, 4}

4 {3, 4, 5}, {2, 4, 6}, {1, 5, 6}, {1, 2, 3}, {0, 3, 6}, {0, 2, 5}, {0, 1, 4}

5 {3, 4, 6}, {2, 3, 5}, {1, 4, 5}, {1, 2, 6}, {0, 5, 6}, {0, 2, 4}, {0, 1, 3}

6 {3, 4, 6}, {2, 3, 5}, {1, 5, 6}, {1, 2, 4}, {0, 4, 5}, {0, 2, 6}, {0, 1, 3}

7 {3, 5, 6}, {2, 4, 5}, {1, 3, 4}, {1, 2, 6}, {0, 4, 6}, {0, 2, 3}, {0, 1, 5}

8 {3, 5, 6}, {2, 4, 5}, {1, 4, 6}, {1, 2, 3}, {0, 3, 4}, {0, 2, 6}, {0, 1, 5}

9 {4, 5, 6}, {2, 3, 6}, {1, 3, 4}, {1, 2, 5}, {0, 3, 5}, {0, 2, 4}, {0, 1, 6}

10 {4, 5, 6}, {2, 3, 6}, {1, 3, 5}, {1, 2, 4}, {0, 3, 4}, {0, 2, 5}, {0, 1, 6}

P(HB, i) denotes the set of possible hands that Alice might hold, given that Bob’s hand is HB and
Alice’s announcement is Ai. Alice’s strategy is informative for Bob provided that

|P(HB, i)| ≤ 1 (1)

for all HB ∈
(
X
b

)
and for all i. In this situation, if Bob holds the cards in HB and Alice broadcasts

i, then Bob can determine the set of a cards that Alice holds.
If for a particular announcement Ai and any hand HB ∈

(
X
b

)
, we have |P(HB, i)| ≤ 1, we say

that Ai is an informative announcement. This terminology is in keeping with previous work, which
considers protocol characteristics only on the level of individual announcements.

The following result was shown by Albert et al. [1], albeit using different terminology:

Theorem 2.1. The announcement Ai is informative for Bob if and only if there do not exist two
distinct sets HA, H

′
A ∈ Ai such that |HA ∩H ′A| ≥ a− c.

Proof. Suppose there exist two distinct sets HA, H
′
A ∈ Ai such that |HA ∩ H ′A| ≥ a − c. We

have that |HA ∪ H ′A| ≤ 2a − (a − c) = a + c = n − b. Hence, there exists HB ∈
(
X
b

)
such that

HB ∩ (HA ∪H ′A) = ∅. Then {HA, H
′
A} ⊆ P(HB, i), which contradicts (1).

Conversely, suppose {HA, H
′
A} ⊆ P(HB, i), where HA 6= H ′A. Then |HA ∪H ′A| ≤ n− b = a+ c,

and hence |HA ∩H ′A| ≥ a− c.

It follows from Theorem 2.1 that the (3, 3, 1)-strategies presented in Examples 1.1 and 1.2 are
both informative for Bob, because |HA ∩ H ′A| ≤ 1 whenever HA and H ′A are two distinct sets in
the same announcement.

We also have the following necessary condition.

Corollary 2.2. Suppose there exists a strategy for Alice that is informative for Bob. Then a > c.
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Furthermore, when a > c, we can derive a lower bound on the size of Alice’s announcement.

Theorem 2.3. Suppose a > c and there exists a strategy for Alice that is informative for Bob.
Then m ≥

(
n−a+c

c

)
.

Proof. Let X ′ ⊆ X where |X ′| = a − c. There are precisely
(
n−a+c

c

)
a-subsets of X that contain

X ′. These a-subsets must occur in different announcements, by Theorem 2.1. Therefore m ≥(
n−a+c

c

)
.

In view of the above theorem, an (a, b, c)-strategy for Alice that is informative for Bob is said to
be optimal if m =

(
n−a+c

c

)
. We will next give a nice combinatorial characterization of such optimal

strategies. First, we require some definitions from design theory.

Definition 2.1. Suppose that t, v, k and λ are positive integers with t ≤ k < v. A t-(v, k, λ)-
design is a pair (X,B), where X is a set of v points and B is a multiset of k-element subsets of
X called blocks, such that every subset of t points from X occurs in precisely λ blocks in B. A
t-(v, k, λ)-design, (X,B) is simple if every block in B occurs with multiplicity one.

In a 2-(v, k, λ)-design, every point occurs in exactly λ(v−1)/(k−1) blocks and the total number
of blocks is λv(v − 1)/(k(k − 1)).

A Steiner triple system of order v (denoted STS(v)) is a 2-(v, 3, 1)-design. It is well-known that
an STS(v) exists if and only if v ≡ 1, 3 mod 6, v ≥ 7 (Theorem 4.18 of [6], p. 70).

Definition 2.2. A large set of t-(v, k, 1)-designs is a set of t-(v, k, 1)-designs, (X,B1), . . . , (X,BN )
(all of which have the same point set, X), in which every k-subset of X occurs as a block in precisely
one of the Bis. (Thus, the Bis form a partition of

(
X
k

)
.) It is easy to prove that there must be exactly

N =
(
v−t
k−t
)

designs in the large set.

There are v − 2 designs in a large set of STS(v); it is known that a large set of STS(v) exists if
and only if v ≡ 1, 3 mod 6, v ≥ 9 (Theorem 4.24 of [6], p. 70).

Theorem 2.4. Suppose that a > c. An optimal (a, b, c)-strategy for Alice that is informative for
Bob is equivalent to a large set of t-(n, a, 1)-designs, where t = a− c.

Proof. Suppose there exists a large set of (a − c)-(n, a, 1)-designs. Then it is easy to see that this
immediately yields an optimal (a, b, c)-strategy for Alice that is informative for Bob.

Conversely, suppose there is an optimal (a, b, c)-strategy for Alice that is informative for Bob.
We need to show that every announcement is an (a − c)-(n, a, 1)-design. Denote t = a − c and
let X ′ ⊆ X, |X ′| = t. From the proof of Theorem 2.3, the a-subsets containing X ′ occur in(
n−a+c

c

)
different announcements. However, there are a total of

(
n−a+c

c

)
announcements, so every

announcement must contain a block that contains X ′.

An optimal (3, 3, 1)-strategy would have m = 5. From Theorem 2.4, the existence of such a
strategy would be equivalent to a large set of five STS(7). As mentioned above, it is known that
this large set does not exist. However, from Example 1.1, we obtain a (3, 3, 1)-strategy for Alice
with m = 6 that is informative for Bob. Thus we have proven the following.

Theorem 2.5. The minimum m such that there exists a (3, 3, 1)-strategy for Alice that is infor-
mative for Bob is m = 6.
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2.2 Strategies that are Secure against Cathy

Now we consider security requirements for an (a, b, c)-strategy. Suppose that Alice makes an an-
nouncement Ai while trying to conceal information about her hand from Cathy. Necessarily Alice’s
hand is an a-subset in Ai. In fact, Cathy knows that Alice’s hand must be one of the a-subsets
in the set P(HC , i) = {HA ∈ Ai : HA ∩ HC = ∅}. Therefore Cathy does obtain some partial
information about Alice’s hand. However, it might be possible to prevent Cathy from determining
whether any individual card in X\HC is held by Alice or by Bob. We define two versions of this
security property:

Definition 2.3.

1. Alice’s strategy is weakly 1-secure against Cathy provided that, for any announcement i, for
any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x ∈ X\HC , it holds that

0 < Pr[x ∈ HA|i,HC ] < 1.

Weak security means that, from Cathy’s point of view, any individual card in X\HC could be
held by either Alice or Bob.

2. Alice’s strategy is perfectly 1-secure against Cathy provided that for any announcement i, for
any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x ∈ X\HC , it holds that

Pr[x ∈ HA|i,HC ] =
a

a+ b
.

Perfect security means that, from Cathy’s point of view, the probability that any individual
card in X\HC is held by Alice is a constant. This probability must equal a/(a + b) because
Alice holds a of the a+ b cards not held by Cathy.

It is obvious that perfect 1-security implies weak 1-security.

Remark: The condition P(HC , i) 6= ∅ is included to account for the possibility that an announce-
ment i is not compatible with certain hands HC held by Cathy.

The conditions for weak and perfect 1-security depend on the probability distributions pHA and
the possible announcements. We will derive simpler, but equivalent, conditions of a combinatorial
nature when Alice’s strategy is equitable. First we state and prove a useful lemma which establishes
that in an equitable strategy, from Cathy’s point of view, any hand HA ∈ P(HC , i) is equally likely.

Lemma 2.6. Suppose that Alice’s strategy is γ-equitable, Alice’s announcement is i, HC ∈
(
X
c

)
and HA ∈ P(HC , i). Then

Pr[HA|HC , i] =
1

|P(HC , i)|
. (2)

Proof. We have

Pr[HA|HC , i] =
Pr[HA, HC , i]

Pr[HC , i]
.
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We can compute

Pr[HA, HC , i] = Pr[HC |HA, i]Pr[i|HA]Pr[HA]

=
1(
b+c
c

) × 1

γ
× 1(

n
a

) .
Similarly, we have

Pr[HC , i] =
∑

H′A∈P(HC ,i)

Pr[HC |H ′A, i]Pr[i|H ′A]Pr[H ′A]

= |P(HC , i)| ×
1(
b+c
c

) × 1

γ
× 1(

n
a

) .
The result follows.

Theorem 2.7. Suppose that Alice’s strategy is γ-equitable. Then the following hold:

1. Alice’s strategy is weakly 1-secure against Cathy if and only if, for any announcement i, for
any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x ∈ X\HC , it holds that

1 ≤ |{HA ∈ P(HC , i) : x ∈ HA}| ≤ |P(HC , i))| − 1.

2. Alice’s strategy is perfectly 1-secure against Cathy if and only if, for any announcement i and
for any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, it holds that

|{HA ∈ P(HC , i) : x ∈ HA} =
a |P(HC , i)|

a+ b

for any x ∈ X\HC .

Proof. Since (2) holds, it immediately follows that

Pr[x ∈ HA|i,HC ] =
|{HA ∈ P(HC , i) : x ∈ HA}|

|P(HC , i)|
. (3)

Using Equation (3), we observe that

0 <
|{HA ∈ P(HC , i) : x ∈ HA}|

|P(HC , i)|
< 1

holds if and only if
1 ≤ |{HA ∈ P(HC , i) : x ∈ HA}| ≤ |P(HC , i)| − 1.

This gives the first condition of the theorem.
Define rx = |{HA ∈ P(HC , i) : x ∈ HA}|. Alice’s strategy is perfectly 1-secure against Cathy if

and only if the value Pr[x ∈ HA|i,HC ] is independent of x. From (3), this occurs if and only if rx
is independent of x. We have that ∑

x∈X\HC

rx = a |P(HC , i)|.

There are a + b terms rx in the above sum. These terms are all equal if and only if they all have
the value r = a |P(HC , i)|/(a+ b). This proves the second condition of the theorem.
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Remark: The above characterization of weak 1-security for equitable strategies is equivalent to
axioms CA2 and CA3 in [1]. The characterization of perfect 1-security for equitable strategies is
equivalent to axiom CA4 in [3].

It can be verified that the (3, 3, 1)-strategy in Example 1.2 is perfectly 1-secure against Cathy.
However, the (3, 3, 1)-strategy in Example 1.1 is only weakly 1-secure against Cathy.

Here is a sufficient condition for a strategy to be perfectly 1-secure against Cathy.

Lemma 2.8. Suppose that each announcement in an equitable (a, b, 1)-strategy is a 2-(n, a, λ)-
design. Then the strategy is perfectly 1-secure against Cathy.

Proof. Given an announcement Ai and a point x, there are

λ

(
n(n− 1)

a(a− 1)
− n− 1

a− 1

)
blocks in Ai that do not contain x. Each of the points in X\{x} is contained in precisely

λ

(
n− 1

a− 1
− 1

)
of these blocks.

3 Simultaneously Informative and Secure Strategies

In general, we want to find an (a, b, c)-strategy (for Alice) that is simultaneously informative for
Bob and (perfectly or weakly) 1-secure against Cathy.

The following was first shown by Albert et al. [1] using a different proof technique:

Theorem 3.1. If a ≤ c + 1, then there does not exist a strategy for Alice that is simultaneously
informative for Bob and weakly 1-secure against Cathy.

Proof. In view of Corollary 2.2, we only need to consider the case a = c + 1. In this case, any
two a-subsets in an announcement must be disjoint, by Theorem 2.1. For any announcement Ai
and any x ∈ X, the definition of weak 1-security necessitates the existence of a block in Ai that
contains x. It therefore follows that every Ai forms a partition of X into n/a blocks.

Now, suppose that Alice’s announcement is Ai and Cathy’s hand is HC . There exists at least
one HA ∈ Ai such that HA ∩ HC 6= ∅. Now, |HC | < |HA|, so there is a point x ∈ HA\HC . The
existence of this point violates the requirement of weak 1-security.

Theorem 3.2. Suppose (a, b, c) = (3, n− 4, 1), where n ≡ 1, 3 mod 6, n > 7. Then there exists an
optimal strategy for Alice that is informative for Bob and perfectly 1-secure against Cathy.

Proof. If n ≡ 1, 3 mod 6, n > 7, then there exists a large set of disjoint STS(n) on an n-set X.
Theorem 2.4 establishes that the resulting strategy is informative for Bob, because no announcement
Ai (the set of blocks of an STS(n)) contains two blocks that intersect in more than one point. Perfect
1-security follows immediately from Lemma 2.8.
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In the case n = 7, there does not exist a large set of STS(7), so we cannot construct an optimal
(3, 3, 1)-strategy. However, Example 1.2 provides us with an equitable strategy with m = 10 and
γ = 2 that is informative for Bob and perfectly 1-secure against Cathy. This is because every
announcement in this strategy is an STS(7) and every 3-subset occurs in exactly two announce-
ments. Examples from the literature for this case typically only provide weak 1-security. Atkinson
et al. [3] give a solution for the perfect 1-security case that requires a much larger communication
complexity m and also involves a complicated procedure in order to avoid card bias.

Next, we give a general method of obtaining equitable strategies from a single “starting design”.
First we require some definitions.

Definition 3.1. Suppose that D = (X,B) is a t-(v, k, λ)-design. An automorphism of D is a
permutation π of X such that π fixes the multiset B. The collection of all automorphisms of D is
denoted Aut(D); it is easy to see that Aut(D) is a subgroup of the symmetric group SX .

Theorem 3.3. Suppose that D = (X,B) is a t-(n, a, 1)-design with t = a− 1. Then there exists a
γ-equitable (a, n−a−1, 1)-strategy with m announcements that is informative for Bob and perfectly
1-secure against Cathy, where γ = n!/|Aut(D)| and m = γ(n− t).

Proof. Let the symmetric group Sn act on D. We obtain a set of designs isomorphic to D. Every
one of these designs is a 2-design because a ≥ 3, so the resulting scheme is perfectly 1-secure against
Cathy by Lemma 2.8. Every design is also an (a − 1)-design with λ = 1, so Theorem 2.1 implies
the scheme is informative for Bob.

Finally, every block is in n!/|Aut(D)| of the resulting set of designs and the total number of
designs is equal to γ(n− a+ 1).

Example 3.1. It is known that there is a 3-(8, 4, 1)-design having an automorphism group of order
1344. (See, for example, result 13 of Section 1.4 of Dembowski [8].) Theorem 3.3 thus yields
a 30-equitable (4, 3, 1)-strategy with 150 announcements that is informative for Bob and perfectly
1-secure against Cathy. However, in this particular case, we can do better. Don Kreher (private
communication) has found a set of ten 3-(8, 4, 1)-designs on a set of points X = {0, . . . , 7} such
that every 4-subset of X occurs in exactly two of these designs. Therefore we have a 2-equitable
(4, 3, 1)-strategy with ten announcements that is informative for Bob and perfectly 1-secure against
Cathy. The set of 3-(8, 4, 1)-designs can be constructed as follows: Begin with a 3-(8, 4, 1)-design
having the following set A0 of 14 blocks:

{3, 4, 5, 6}, {2, 5, 6, 7}, {2, 3, 4, 7}, {1, 4, 5, 7}, {1, 3, 6, 7}, {1, 2, 4, 6}, {1, 2, 3, 5},
{0, 4, 6, 7}, {0, 3, 5, 7}, {0, 2, 4, 5}, {0, 2, 3, 6}, {0, 1, 5, 6}, {0, 1, 3, 4}, {0, 1, 2, 7}.

Define the permutation π = (0, 1)(2)(3, 4, 6, 7, 5) and let π (and its powers) act on A0.

3.1 Strategies with c = a− 2

In this section, we focus on (a, b, a−2)-deals that are simultaneously informative for Bob, equitable,
and perfectly 1-secure against Cathy. Where possible, we weaken our assumption that the strategy
is equitable and our assumption of perfect 1-security to achieve the given result. We do assume that
the strategies discussed are informative throughout these results, although we may not re-emphasize
this point in the intervening discussion. We begin with some notation.
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Consider an (a, b, c)-deal and a corresponding announcement Ai. For any point x ∈ X, we
define the block neighborhood of x with respect to Ai, denoted Bi

x, to be Bi
x = {HA ∈ Ai : x ∈ HA}

and the neighborhood of x with respect to Ai, denoted Ni(x), to be

Ni(x) =

 ⋃
HA∈Bix

HA

 \{x}.
For ease of notation, if the choice of Ai is understood from context, we sometimes write G for Gi,
N(x) for Ni(x), and Bx for Bi

x.
We can also extend these notions as follows. Define Bi

x1,...,xt = {HA ∈ Ai : x1, . . . , xt ∈ HA}.
That is, we say Bi

x1,...,xt is the block neighborhood of the set {x1, . . . , xt}. Similarly, define the
neighborhood of x1, . . . , xt, denoted N(x1, . . . , xt)

i, to be

N(x1, . . . , xt)
i =

 ⋃
HA∈Bix1,...,xt

HA

 \{x1, . . . , xt}.
If i is understood from context, we refer to Bx1,...,xt and N(x1, . . . , xt).
We begin with a preliminary lemma concerning block neighborhoods. A simple consequence

of an (a, b, a − 2)-strategy being informative is that the intersection of any two distinct block
neighborhoods has cardinality less than one.

Lemma 3.4. Consider an (a, b, c)-deal such that a− c = 2 and a corresponding announcement Ai.
Suppose that Alice’s strategy is informative for Bob. Then for any distinct x, y ∈ X, there is at
most one hand HA ∈ Ai such that x, y ∈ HA. That is, |Bx ∩By| ≤ 1.

Proof. This follows directly from Theorem 2.1.

An interesting question concerns which hands are possible (i.e., occur with probability greater
than zero) for Cathy for any given announcement Ai. The following lemma shows that Cathy may
hold a subset of any hand HA that appears in Ai. We will then extend this result to show that
Cathy’s hand may consist of a subset of size c − 1 from any hand HA appearing in Ai, together
with another card z /∈ HA.

Lemma 3.5. Consider an (a, b, c)-deal such that a − c = 2 and a corresponding announcement
Ai. Suppose that Alice’s strategy is informative for Bob and weakly 1-secure against Cathy. Let
HA ∈ Ai and Y ⊂ HA satisfying |Y | = c. Then P(Y, i) 6= ∅.

Proof. We proceed by contradiction. Write HA = {x1, . . . , xa} and Y = {x1, . . . , xc}. Suppose
P(Y, i) = ∅. Then every hand of Ai intersects Y . In particular, by Lemma 3.4, every hand in Ai
(excluding HA) contains exactly one element of Y .

Now, since Alice’s strategy is weakly 1-secure against Cathy, there must be some H ′A ∈ Ai such
that H ′A 6= HA. By the above argument, |H ′A ∩ Y | = 1. Suppose, without loss of generality, H ′A
contains x1. We will now use the existence of H ′A to construct a possible hand for Cathy that would
imply Alice holds x1.

Define Y ′ = {x2, . . . , xa−1}, so |Y ′| = c. Then P(Y ′, i) consists of all the blocks in Ai containing
x1 (except for HA). In particular, H ′A ∈ P(Y ′, i), so this set is nonempty, and therefore Y ′ is a
possible hand for Cathy. But if Cathy holds Y ′, Alice must hold x1, which contradicts the security
assumption.
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Before we generalize Lemma 3.5, we will need the following result, which shows that, given a
particular announcement Ai and choice of card x, at least two hands in Ai must contain x and at
least two hands in Ai must not contain x. We remark that Albert et al. [1] show a related result,
namely that given an informative and weakly 1-secure announcement, each card must appear in at
least c+ 1 hands.

Lemma 3.6. Consider an (a, b, c)-deal such that a− c = 2 and a corresponding announcement Ai.
Suppose that Alice’s strategy is informative for Bob and weakly 1-secure against Cathy. Suppose
x ∈ X. Then there are at least two hands of Ai containing x and at least two hands of Ai that do
not contain x.

Proof. We proceed by contradiction. We first show there exist HA, H
′
A ∈ Ai which contain x. Now,

there must be some HA ∈ Ai satisfying x ∈ HA, as otherwise x is not held by Alice. Suppose
all other hands of Ai do not contain x. By Lemma 3.5, we may pick Y ⊂ HA, |Y | = c, where
P(Y, i) 6= ∅. That is, Y is a possible hand for Cathy. But since HA /∈ P(Y, i), there must be some
other H ′A ∈ Ai such that x ∈ H ′A. Otherwise, if Cathy holds Y , then Cathy knows x is not held by
Alice.

We show in a similar fashion there exist HA, H
′
A ∈ Ai which do not contain x. There must be

some HA ∈ Ai satisfying x /∈ HA, as otherwise x must be held by Alice. Suppose all other hands
of Ai contain x. By Lemma 3.5, we may pick Y ⊂ HA, |Y | = c, where P(Y, i) 6= ∅. That is, Y is
a possible hand for Cathy. But since HA /∈ P(Y, i), there must be some other H ′A ∈ Ai such that
x /∈ H ′A. Otherwise, if Cathy holds Y , then Cathy knows x is held by Alice.

Lemma 3.7. Consider an (a, b, c)-deal such that a − c = 2. Suppose that Alice’s strategy is
informative for Bob and weakly 1-secure against Cathy. Let HA ∈ Ai and Y ⊂ HA satisfying
|Y | = c− 1. Let z ∈ X such that z /∈ HA. Then P(Y ∪ {z}, i) 6= ∅.

Proof. We proceed by contradiction. Write HA = {x1, . . . , xa} and Y = {x1, . . . , xc−1}. Suppose
P(Y ∪ {z}, i) = ∅. Then every hand of Ai intersects Y ∪ {z}. In particular, by Lemma 3.4, every
hand in Ai (excluding HA) contains at most one element of Y .

Now, by Lemma 3.6, there must be some H ′A ∈ Ai such that H ′A 6= HA and z /∈ H ′A. By the
above argument, |H ′A ∩ (Y ∪ {z})| = 1. Suppose, without loss of generality, H ′A contains x1. We
will now use the existence of H ′A to construct a possible hand Y ′ for Cathy that would imply Alice
holds x1.

Define Y ′ = {x2, . . . , xc, z} = Y ∪ {z} ∪ {xc}, so |Y ′| = c. Here we include xc ∈ Y ′ for technical
reasons. We want |Y ′| = c and we need H ′A ∩ Y ′ = ∅, which we have since Lemma 3.4 implies the
elements x1, xc cannot both be in H ′A.

Then P(Y ′, i) consists of all the blocks in Ai that do not contain x2, . . . , xc, or z. This implies
the elements of P(Y ′, i) must contain x1, since every hand of Ai necessarily intersects Y ∪ {z}.
Since H ′A ∈ P(Y ′, i), we have that this set is nonempty, so Y ′ is a possible hand for Cathy. But if
Cathy holds Y ′, Alice must hold x1, which contradicts the security assumption.

We remark that it is possible to use the above results to show that any hand is actually possible
for Cathy in this case. That is, consider an (a, b, c)-strategy such that a−c = 2, which is informative
for Bob and weakly 1-secure against Cathy. Given an announcement Ai and a hand HC ∈

(
X
c

)
,

we can show P(HC , i) 6= ∅. We do not include the proof here, however, as we do not require this
strong of a result for our purposes.
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We are now ready to show one of our main results concerning the special case c = a−2. Namely,
any (a, b, a− 2)-strategy that is informative, equitable, and perfectly 1-secure also satisfies c = 1:

Theorem 3.8. Consider an (a, b, c)-deal such that a − c = 2. Suppose that Alice’s strategy is
equitable, informative for Bob, and perfectly 1-secure against Cathy. Then a = 3 and hence c = 1.

Proof. Consider an announcement Ai. Suppose HA = {x1, . . . , xa} ∈ Ai. First note that a ≥ 3,
since c ≥ 1 and a− c = 2.

Let Bx1 be the block neighborhood of x1 and suppose |Bx1 | = r. Let Bx2 be the block neigh-
borhood of x2 and suppose |Bx2 | = s. By Lemma 3.6, we have r, s ≥ 2.

Set HC = {x3, . . . , xa}. By Lemma 3.5, we have P(HC , i) 6= ∅. Then we have (by Lemma 3.4),
|Bx1\BHC | = r− 1 and |Bx2\BHC | = s− 1. By Theorem 2.7, we have |Bx1\BHC | = |Bx2\BHC |, so
r = s.

Now consider z such that z ∈ N(x1). We show z ∈ N(x2) as well. For the case c = 1, Lemma 3.5
implies we may set HC = {z}. Then if z /∈ N(x2), by Lemma 3.4, we would have |Bx1\BHC | = r−1
and |Bx2\BHC | = s. By Theorem 2.7, we have r−1 = s, a contradiction since r = s. It now suffices
to consider a ≥ 4. Set HC = {x4, . . . , xa, z}; by Lemma 3.7, we have P(HC , i) 6= ∅, so HC is a
possible hand for Cathy. If z /∈ N(x2), by Lemma 3.4, we would have |Bx1\BHC | = r − 2 and
|Bx2\BHC | = s − 1. But by Theorem 2.7, we have r − 2 = s − 1, a contradiction since r = s.
Therefore z ∈ N(x2).

Suppose H ′A = {z1, . . . , za−1, x1} ∈ Bx1 , where H ′A 6= HA, and set HC = {z1, . . . , za−2}. By
Lemma 3.4, |Bx1\BHC | = r− 1. By the above argument, z1, . . . , za−2 ∈ N(x2) and by Lemma 3.4,
these points occur in different blocks of x2 and each point occurs exactly once. So |Bx2\BHC | =
s − (a − 2). By Lemma 3.5, we have P(HC , i) 6= ∅. So by Theorem 2.7, we have |Bx1\BHC | =
|Bx2\BHC |, so r − 1 = s− a+ 2. Since we also have r = s, this implies a = 3, as desired.

In light of Theorem 3.8, we now focus on (3, n− 4, 1)-strategies that are equitable and perfectly
1-secure. Given this special case, the stronger security assumption allows us to state some useful
results concerning the neighborhoods of particular cards. We first show that any two points must
have a common neighbor, which provides the basis for a much stronger result concerning neighbor-
hoods. In fact, the neighborhoods of any two distinct points (minus the points themselves) are the
same. The next two lemmas are the final ingredients needed for our second main result, namely
that announcements in such strategies are necessarily Steiner triple systems.

Lemma 3.9. Suppose (a, b, c) = (3, n − 4, 1) and fix a corresponding announcement Ai. Suppose
that Alice’s strategy is equitable, informative for Bob, and perfectly 1-secure against Cathy. Then
for any distinct x, y ∈ X, there exists z ∈ X such that z ∈ N(x) ∩N(y).

Proof. We proceed by contradiction. Let x, y ∈ X and suppose N(x) ∩N(y) = ∅. We proceed by
using a combination of Lemma 3.4 and the results of Theorem 2.7 to count and compare the size of
the block neighborhoods of x and y in light of possible hands for Cathy. Recall that, from Cathy’s
point of view, the block neighborhoods of x and y must have the same size.

Let Bx be the block neighborhood of x and suppose |Bx| = r. Let By be the block neighborhood
of y and suppose |By| = s. From Lemma 3.6, we have r, s ≥ 2.

Thus, there must be some ` ∈ N(x) such that ` /∈ N(y). By Lemma 3.5, we may set HC = {`}.
Consider Bx\BHC . By Lemma 3.4 and since ` ∈ N(x), we see that |Bx\BHC | = |Bx| − 1 = r − 1.
Since ` /∈ N(y), we have |By\BHC | = s. Then since Alice’s strategy is perfectly 1-secure against
Cathy, by Theorem 2.7, we also have |Bx\BHC | = |By\BHC |. This implies s = r − 1.
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Similarly, we have some `′ ∈ N(y) such that `′ /∈ N(x). By Lemma 3.5, we may set HC = {`′}.
By the same argument as above, we have |By\BHC | = |By| − 1 = s − 1 and |Bx\BHC | = r. Since
|Bx\BHC | = |By\BHC |, we conclude s = r + 1.

Thus we have a contradiction.

Lemma 3.10. Suppose (a, b, c) = (3, n − 4, 1) and and fix a corresponding announcement Ai.
Suppose that Alice’s strategy is equitable, informative for Bob, and perfectly 1-secure against Cathy.
Then for any distinct x, y ∈ X, we have N(x)\{y} = N(y)\{x}.

Proof. Let x, y ∈ X be distinct. Let Bx be the block neighborhood of x and suppose |Bx| = r. Let
By be the block neighborhood of y and suppose |By| = s. From Lemma 3.6, we have r, s ≥ 2. We
use a technique similar to that used in the proof of Lemma 3.9, i.e., counting and comparing the
sizes of block neighborhoods.

By Lemma 3.9, there exists z ∈ X such that z ∈ N(x)∩N(y). We observe that, by Lemma 3.5,
we may set HC = {z}. Then we have (by Lemma 3.4) |Bx\BHC | = r − 1 and |By\BHC | = s − 1.
By Theorem 2.7, we have |Bx\BHC | = |By\BHC |, so r = s.

We proceed by contradiction. First suppose there is ` 6= x, y such that ` ∈ N(x) but ` /∈ N(y).
By Lemma 3.5, we may set HC = {`}. We then have (by Lemma 3.4) |Bx\BHC | = r − 1 and
|By\BHC | = s. By Theorem 2.7, we have |Bx\BHC | = |By\BHC |, so s = r − 1, a contradiction.
This implies that N(x)\{y} ⊆ N(y)\{x}.

Now suppose there there is `′ 6= x, y such that `′ ∈ N(y) but `′ /∈ N(x). We observe that, by
Lemma 3.5, we may set HC = {`′}. We then have (by Lemma 3.4) |Bx\BHC | = r and |By\BHC | =
s− 1. By Theorem 2.7, we have |Bx\BHC | = |By\BHC |, so r = s− 1, a contradiction. This implies
that N(y)\{x} ⊆ N(x)\{y}.

Theorem 3.11. Suppose (a, b, c) = (3, n − 4, 1) and suppose that Alice’s strategy is equitable,
informative for Bob, and perfectly 1-secure against Cathy. Then every announcement is a Steiner
triple system.

Proof. Fix an (a, b, c)-deal and suppose Alice’s strategy is equitable, informative for Bob, and
perfectly 1-secure against Cathy. Consider a corresponding announcement Ai. Then in particular,
each hand of Ai has size 3.

We first observe that Lemma 3.4 implies that any pair x, y ∈ X occurs in at most one hand of
Ai. It remains to show that any pair x, y ∈ X occurs in exactly one hand of Ai.

Let x, y ∈ X. By Lemma 3.9, there is some point z ∈ X such that z ∈ N(x) ∩ N(y). In
particular, x ∈ N(z). By Lemma 3.10, we have N(z)\{y} = N(y)\{z}. Since z ∈ N(y), we see
that N(z)\{y} ∪ {z} = N(y). But x 6= y, z and x ∈ N(z), so we have x ∈ N(y). This gives us the
desired result.

We present an interesting example in the case a = 4, c = 2.

Example 3.2. It was proven by Chouinard [5] that there is a large set of 2-(13, 4, 1)-designs. There
are

(
11
2

)
= 55 designs in the large set. This yields a deterministic (4, 7, 2)-strategy that is informative

for Bob. We can easily determine the security of the scheme against Cathy. Suppose that Alice’s
announcement is Ai and Cathy’s hand is HC = {y, z}. There is a unique block in Ai that contains
the pair {y, z}, say {w, x, y, z}. There are three blocks that contain y but not z, and three blocks
that contain z but not y. Since Ai contains 13 blocks, it follows that the set P({y, z}, i) consists
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of six blocks. Within these six blocks, w and x occur three times, and every point in X\{w, x, y, z}
occurs twice. Therefore, we have

Pr[w ∈ HA|HC ] = Pr[x ∈ HA|HC ] =
1

2

and

Pr[u ∈ HA|HC ] =
1

3

for all u ∈ X\{w, x, y, z}. If a (4, 7, 2)-strategy were perfectly 1-secure against Cathy (which is
impossible, in view of Theorem 3.8), we would have Pr[u ∈ HA|HC ] = 4/11 for all u ∈ X\HC .

4 Generalized Notions of Security

We may generalize the definitions of weak and perfect 1-security to weak and perfect δ-security in
the natural way.

Definition 4.1. Let 1 ≤ δ ≤ a.

1. Alice’s strategy is weakly δ-secure against Cathy provided that for any δ′ such that 1 ≤ δ′ ≤ δ,
for any announcement i, for any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x1, . . . , xδ′ ∈

X\HC , it holds that
0 < Pr[x1, . . . , xδ′ ∈ HA|i,HC ] < 1.

Weak security means that, from Cathy’s point of view, any set of δ or fewer elements from
X\HC may or may not be held by Alice.

2. Alice’s strategy is perfectly δ-secure against Cathy provided that for any δ′ such that 1 ≤
δ′ ≤ δ, for any announcement i, for any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any

x1, . . . , xδ′ ∈ X\HC , it holds that

Pr[x1, . . . , xδ′ ∈ HA|i,HC ] =

(
a
δ′

)(
a+b
δ′

) .
Perfect security means that, from Cathy’s point of view, the probability that any set of δ or
fewer cards from X\HC is held by Alice is a constant.

It is obvious that perfect δ-security implies weak δ-security.

Remark: The condition P(HC , i) 6= ∅ is included to account for the possibility that an announce-
ment i is not compatible with certain hands HC held by Cathy.

The conditions for weak and perfect δ-security depend on the probability distributions pHA
and the possible announcements. As before, we will derive simpler, but equivalent, conditions of a
combinatorial nature when Alice’s strategy is equitable.

Theorem 4.1. Suppose that Alice’s strategy is γ-equitable. Then the following hold:

1. Alice’s strategy is weakly δ-secure against Cathy if and only if, for any δ′ such that 1 ≤ δ′ ≤ δ,
for any announcement i, for any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x1, . . . , xδ′ ∈

X\HC , it holds that

1 ≤ |{HA ∈ P(HC , i) : x1, . . . , xδ′ ∈ HA}| ≤ |P(HC , i))| − 1.
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2. Alice’s strategy is perfectly δ-secure against Cathy if and only if, for any announcement i and
for any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, it holds that

|{HA ∈ P(HC , i) : x1, . . . , xδ ∈ HA}| =
(
a
δ

)
|P(HC , i)|(
a+b
δ

)
for any x1, . . . , xδ ∈ X\HC .

Proof. Let 1 ≤ δ′ ≤ δ.
Since (2) (from Lemma 2.6) holds, it immediately follows that

Pr[x1, . . . , xδ′ ∈ HA|i,HC ] =
|{HA ∈ P(HC , i) : x1, . . . , xδ′ ∈ HA}|

|P(HC , i)|
. (4)

Using Equation (4), we observe that

0 <
|{HA ∈ P(HC , i) : x1, . . . , xδ′ ∈ HA}|

|P(HC , i)|
< 1

holds if and only if

1 ≤ |{HA ∈ P(HC , i) : x1, . . . , xδ′ ∈ HA}| ≤ |P(HC , i)| − 1.

This gives the first condition of the theorem.
For the second condition of the theorem, we first remark that, if the given security property

holds for δ, it will automatically hold for δ′ such that 1 ≤ δ′ ≤ δ. This is because the security
property for δ says that every δ-subset occurs the same number of times within a certain set of
blocks of size |P(HC , i)|. That is, we have a t-design with t = δ. It is a standard result that every
t-design is a t′-design for all t′ ≤ t. Thus it suffices to show that, for any announcement i and for
any HC ∈

(
X
c

)
such that P(HC , i) 6= ∅, and for any x1, . . . , xδ ∈ X\HC , then

|{HA ∈ P(HC , i) : x1, . . . , xδ ∈ HA}| =
(
a
δ

)
|P(HC , i)|(
a+b
δ

)
holds if and only if

Pr[x1, . . . , xδ ∈ HA|i,HC ] =

(
a
δ

)(
a+b
δ

) .
Define rx1,...,xδ = |{HA ∈ P(HC , i) : x1, . . . , xδ ∈ HA}|. Alice’s strategy is perfectly δ-secure

against Cathy if and only if the value Pr[x1, . . . , xδ ∈ HA|i,HC ] is independent of the δ-subset
{x1, . . . , xδ}. From (4), this occurs if and only if rx1,...,xδ is independent of the δ-subset {x1, . . . , xδ}.
We have that ∑

D∈(X\HCδ )

rD =

(
a

δ

)
|P(HC , i)|.

There are
(
a+b
δ

)
terms rD in the above sum. These terms are all equal if and only if they all have

the value r =
(
a
δ

)
|P(HC , i)|/

(
a+b
δ

)
. This completes the proof.
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Lemma 4.2. Suppose that each announcement in an equitable (a, b, 1)-strategy is a t-(n, a, λ)-
design. Then the strategy is perfectly (t− 1)-secure against Cathy.

Proof. Given an announcement Ai and a point x, there are

λ

((
n
t

)(
a
t

) − (n−1t−1
)(

a−1
t−1
))

blocks in Ai that do not contain x. For any subset S = {x1, . . . , xs−1} ⊂ X\{x} of size s−1, where
1 ≤ s ≤ t, the subset S is contained in precisely

λ

((
n−s+1
t−s+1

)(
a−s+1
t−s−1

) − (n−sa−s
)(

a−s
t−s
))

of these blocks.

Remark 4.1. Lemma 4.2 is a generalization of Lemma 2.8.

Lemma 4.2 immediately implies the following:

Corollary 4.3. The construction method given in Theorem 3.3, which shows how to obtain an
equitable strategy from a single starting t − (n, a, 1)-design, where t = a − 1, yields a strategy that
is perfectly (a− 2)-secure.

4.1 Strategies with c = a− d

In this section, we generalize the results of Section 3.1. That is, we consider the case of (a, b, a−d)-
deals that are simultaneously informative for Bob and perfectly (d−1)-secure against Cathy. Where
possible, we weaken our assumption that the strategy is equitable and satisfies perfect (d − 1)-
security to achieve the given result. We do assume that the strategies discussed are informative
throughout.

Although the results of Section 3.1 are subsumed by the parallel results of this section, we feel
it is useful to include both. Section 3.1 provides a good basis for understanding the results of this
section; the proofs of the generalized results are much more technical and complicated than those
for the simple case where c = a− 2. For readability, we include a list of correspondences between
the results of these two sections:

Result in Section 3.1 Corresponding Result in Section 4.1

Lemma 3.4 Lemma 4.4
Lemma 3.5 Lemma 4.5
Lemma 3.6 Lemma 4.6
Lemma 3.7 Lemma 4.7

Theorem 3.8 Theorem 4.8
Lemmas 3.9, 3.10 Lemma 4.9

Theorem 3.11 Theorem 4.10

The main result of this section is that any (a, b, a − d)-strategy that is informative, equitable,
and perfectly (d−1)-secure also satisfies c = 1; that is, d = a−1. Moreover, announcements in such
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strategies are necessarily d-(n, d + 1, 1) designs. To achieve these results, however, we do need an
additional assumption; namely that b is sufficiently large. As we will see, taking b ≥ d− 1 suffices.
We do not know if this assumption is necessary, however.

Lemma 4.4. Consider an (a, b, c)-deal such that a−c = d, and a corresponding announcement Ai.
Suppose that Alice’s strategy is informative for Bob. Then for any distinct x1, . . . , xd ∈ X, there is
at most one hand HA ∈ Ai such that x1, . . . , xd ∈ HA. That is, |Bx1,...,xd | ≤ 1.

Proof. This follows directly from Theorem 2.1.

Lemma 4.5. Consider an (a, b, c)-deal such that a − c = d and b ≥ d − 1. Fix a corresponding
announcement Ai. Suppose that Alice’s strategy is informative for Bob and weakly (d − 1)-secure
against Cathy. Let HA ∈ Ai and Y ⊂ HA satisfy |Y | = c. Then P(Y, i) 6= ∅.

Proof. We proceed by contradiction. Write HA = {x1, . . . , xa} and Y = {x1, . . . , xc}. Suppose
P(Y, i) = ∅. Then every hand of Ai intersects Y .

Now, since Alice’s strategy is weakly (d−1)-secure against Cathy, there must be some H ′A ∈ Ai
such that H ′A 6= HA. By the above argument, |H ′A ∩ Y | ≥ 1.

Suppose |H ′A ∩ Y | = `′ and |HA ∩H ′A| = `. Note that `′ ≤ ` ≤ d− 1 holds by Lemma 4.4 and
`′ ≤ c holds by construction. Without loss of generality, assume H ′A contains x1, . . . , x`′ .

We now wish to construct a special possible hand for Cathy, say Y ′, that will allow us to derive
a contradiction. That is, we will construct a Y ′ such that HA /∈ P(Y ′, i), but P(Y ′, i) contains a
hand H ′′A satisfying |HA ∩ H ′′A| ≥ d. To ensure Y ′ is a possible hand for Cathy, we construct Y ′

using elements that do not appear in H ′A, so that H ′A ∈ P(Y ′, i) and hence P(Y ′, i) is nonempty.
For technical reasons, we pick one element z that occurs in HA but not H ′A, and `′ − 1 elements
z1, . . . , z`′−1 that occur outside of both HA and H ′A, and use these in our construction of Y ′.

Since HA 6= H ′A, there is some z ∈ HA such that z /∈ H ′A and z is distinct from x`′+1, . . . , xc.
To see this, write ` = `′ + t for some t. There are d− t elements in HA\(Y ∪H ′A). Thus d− t ≥ 1
suffices, but necessarily we have t ≤ ` ≤ d− 1. From a technical standpoint, we need such a point
z for the case c = 1; this will ensure that HA ∩ Y ′ 6= ∅.

In addition, we may pick distinct z1, . . . , z`′−1 /∈ HA ∪ H ′A. This follows because there are at
least a+ b+ (a− d)− (2a− `) = b− d+ ` points not in HA ∪H ′A. We have b− d+ ` ≥ `′ − 1 so
long as b ≥ d− 1, which is true by assumption.

Define Y ′ = {x`′+1, . . . , xc, z1, . . . z`′−1, z}, so |Y ′| = c. Then H ′A ∈ P(Y ′, i) by construction, so
this set is nonempty, and therefore Y ′ is a possible hand for Cathy. Note also that HA /∈ P(Y ′, i).

Consider the set T = {xc+1, . . . , xa} ⊂ HA, which contains d elements. Note that at most one
of these elements is z, so we may pick a subset T ′ ⊂ T satisfying |T ′| = d−1 and T ′∩Y ′ = ∅. Since
the scheme satisfies weak (d − 1)-security by assumption, T ′ ⊂ H ′′A for some H ′′A ∈ P(Y ′, i). Note
that H ′′A 6= HA. Now, H ′′A must intersect Y (but not Y ′), so H ′′A must contain an element from
{x1, . . . , x`′}. Suppose (without loss of generality) that H ′′A contains x1. Then the set {x1} ∪ T ′ of
size d appears in both HA and H ′′A, a contradiction.

Lemma 4.6. Consider an (a, b, c)-deal such that a − c = d and b ≥ d − 1. Fix a corresponding
announcement Ai. Suppose that Alice’s strategy is informative for Bob and weakly (d − 1)-secure
against Cathy. Suppose D = {x1, . . . , xd−1} ⊂ X. Then there are at least two hands of Ai contain-
ing D and at least two hands of Ai that do not contain D.
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Proof. We first show there exist HA, H
′
A ∈ Ai which contain D. Now, there must be some HA ∈ Ai

satisfying D ⊆ HA, as otherwise D is not held by Alice, which contradicts the assumption that the
scheme is weakly (d−1)-secure. Suppose all other hands of Ai do not contain D. Let Y ⊂ HA such
that |Y | = c. By Lemma 4.5, we have P(Y, i) 6= ∅; that is, Y is a possible hand for Cathy. But
since HA /∈ P(Y, i), there must be some other H ′A ∈ Ai such that D ⊆ H ′A. Otherwise, if Cathy
holds Y , then Cathy knows D is not held by Alice.

We show in a similar fashion there exist HA, H
′
A ∈ Ai which do not contain D. There must be

some HA ∈ Ai satisfying D * HA, as otherwise D must be held by Alice. Suppose all other hands
of Ai contain D. Let Y ⊂ HA such that |Y | = c. By Lemma 4.5, we have P(Y, i) 6= ∅; that is, Y is
a possible hand for Cathy. But since HA * P(Y, i), there must be some other H ′A ∈ Ai such that
D /∈ H ′A. Otherwise, if Cathy holds Y , then Cathy knows D is held by Alice.

Lemma 4.7. Consider an (a, b, c)-deal such that a − c = d and b ≥ d − 1. Fix a corresponding
announcement Ai. Suppose that Alice’s strategy is informative for Bob and weakly (d − 1)-secure
against Cathy. Let HA ∈ Ai and Y ⊂ HA satisfy |Y | = c− 1. Let z ∈ X such that z /∈ HA. Then
P(Y ∪ {z}, i) 6= ∅.

Proof. This result is only interesting for c ≥ 2. The case c = 1 is follows directly from Lemma 4.5,
since for any z ∈ X, there is some hand in Ai that contains z.

We proceed by contradiction. Write HA = {x1, . . . , xa} and Y = {x1, . . . , xc−1}. Let z ∈ X
such that z /∈ HA. Suppose P(Y ∪ {z}, i) = ∅. Then every hand of Ai intersects Y ∪ {z}.

Now, since Alice’s strategy is weakly (d−1)-secure against Cathy, there must be some H ′A ∈ Ai
such that H ′A 6= HA and z /∈ H ′A (Lemma 4.6 gives a stronger result). By the above argument,
|H ′A ∩ Y | ≥ 1.

Suppose |H ′A∩Y | = `′ and |HA∩H ′A| = `. Note that `′ ≤ ` ≤ d−1 by Lemma 4.4 and `′ ≤ c−1
holds by construction. Without loss of generality, assume H ′A contains x1, . . . , x`′ .

We now wish to construct a special possible hand for Cathy, say Y ′, that will allow us to derive
a contradiction. That is, we will construct a Y ′ such that HA /∈ P(Y ′, i), but P(Y ′, i) contains a
hand H ′′A satisfying |HA ∩ H ′′A| ≥ d. To ensure Y ′ is a possible hand for Cathy, we construct Y ′

using elements that do not appear in H ′A, so that H ′A ∈ P(Y ′, i) and hence P(Y ′, i) is nonempty.
For technical reasons, we pick one element z′ that occurs in HA but not H ′A, and `′ − 2 elements
z1, . . . , z`′−2 that occur outside of both HA and H ′A, and use these in our construction of Y ′.

Since HA 6= H ′A, there is some z′ ∈ HA such that z′ /∈ H ′A and z′ is distinct from x`′+1, . . . , xc.
To see this, write ` = `′ + t for some t. There are d − t elements in HA\(Y ∪ H ′A ∪ {xc}). Thus
d− t ≥ 1 suffices, which holds because t ≤ ` ≤ d− 1 by the security assumption. From a technical
standpoint, we need such a point z′ for the case c = 2; this will ensure that HA ∩ Y ′ 6= ∅.

In addition, we may pick distinct z1, . . . , z`′−2 /∈ HA ∪H ′A such that zi 6= z for 1 ≤ i ≤ `′ − 2.
This follows because there are at least a+ b+ (a− d)− (2a− `) = b− d+ ` points not in HA ∪H ′A.
We have b − d + ` ≥ `′ − 1 so long as b ≥ d − 1, which holds by assumption. (Note that we need
`′ − 1 points, not `′ − 2 points, because z must be distinct from z1, . . . , z`′−2, and all are points
occurring outside of HA ∪H ′A.)

Define Y ′ = {x`′+1, . . . , xc, z1, . . . z`′−2, z, z
′}, so |Y ′| = c. Then H ′A ∈ P(Y ′, i) by construction,

so this set is nonempty, and therefore Y ′ is a possible hand for Cathy. Note also that HA /∈ P(Y ′, i).
Consider the set T = {xc+1, . . . , xa} ⊂ HA, which contains d elements. Note that at most one

of these elements is z′, so we may pick a subset T ′ ⊂ T satisfying |T ′| = d − 1 and T ′ ∩ Y ′ = ∅.
Since the scheme satisfies (d − 1)-weak security by assumption, T ′ ⊂ H ′′A for some H ′′A ∈ P(Y ′, i).
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Note that H ′′A 6= HA. But H ′′A must intersect Y (but not Y ′) so H ′′A must contain an element from
{x1, . . . , x`′}. Suppose (without loss of generality) H ′′A contains x1. Then the set {x1} ∪ T ′ of size
d appears in both HA and H ′′A, a contradiction.

Theorem 4.8. Consider an (a, b, c)-deal such that a − c = d and b ≥ d − 1. Suppose that Alice’s
strategy is equitable, informative for Bob, and perfectly (d−1)-secure against Cathy. Then a = d+1
and hence c = 1.

Proof. We remark that a ≥ d+ 1, since c ≥ 1.
Consider an announcement Ai. Suppose HA = {x1, . . . , xa} ∈ Ai. Let Bx1,...,xd−1

be the block
neighborhood of x1, . . . , xd−1 and suppose |Bx1,...,xd−1

| = r. Let Bx2,...,xd be the block neighborhood
of x2, . . . , xd and suppose |Bx2,...,xd | = s. By Lemma 4.6, we have r, s ≥ 2.

Set HC = {xd+1, . . . , xa}. By Lemma 4.5, we have P(HC , i) 6= ∅, so HC is a possible hand for
Cathy. Then we have, by Lemma 4.4, |Bx1,...,xd−1

\BHC | = r − 1 and |Bx2,...,xd\BHC | = s − 1. By
Theorem 4.1, we have |Bx1,...,xd−1

\BHC | = |Bx2,...,xd\BHC |, so we conclude r = s.
Now consider z such that z ∈ N(x1, . . . , xd−1), but z /∈ HA. We show z ∈ N(x2, . . . , xd) as

well. For the case c = 1, Lemma 4.5 implies we may set HC = {z}. Then if z /∈ N(x2, . . . , xd), by
Lemma 4.4, we would have |Bx1,...,xd−1

\BHC | = r − 1 and |Bx2,...,xd\BHC | = s. By Theorem 2.7,
we have r − 1 = s, a contradiction since r = s. For c > 1, we may set HC = {xd+1, . . . , xa−1, z}.
By Lemma 4.7, we have P(HC , i) 6= ∅, so HC is a possible hand for Cathy. If z /∈ N(x2, . . . , xd),
by Lemma 4.4, we would have |Bx1,...,xd−1

\BHC | = r − 2 and |Bx2,...,xd\BHC | = s − 1. But by
Theorem 2.7, we have r − 2 = s− 1, a contradiction since r = s. Therefore z ∈ N(x2, . . . , xd).

Suppose H ′A = {x1, . . . , xd−1} ∪ {z1, . . . , za−d+1} ∈ Bx1,...,xd−1
and set HC = {z1, . . . , za−d}. By

Lemma 4.5, we have P(HC , i) 6= ∅, so HC is a possible hand for Cathy.
Now, we may pick H ′A 6= HA by Lemma 4.6. Then by Lemma 4.4, we have |Bx1,...,xd−1

\BHC | =
r− 1. By the above argument, z1, . . . , za−d ∈ N(x2, . . . , xd) and by Lemma 4.4, these points occur
in different blocks of Bx2,...,xd and each point occurs exactly once. So |Bx2,...,xd\BHC | = s− (a− d).
So by Theorem 4.1, we have |Bx1,...,xd−1

\BHC | = |Bx2,...,xd\BHC |, so r − 1 = s − a + d. Since we
also have r = s, this implies a = d+ 1, as desired.

As before, we can now focus our attention on (d+ 1, b, 1)-strategies that are equitable, informa-
tive for Bob, and perfectly (d− 1)-secure.

Lemma 4.9. Consider a (d+1, b, 1)-deal satisfying b ≥ d−1 and fix a corresponding announcement
Ai. Suppose that Alice’s strategy is equitable, informative for Bob, and perfectly (d − 1)-secure
against Cathy. Then for any distinct D,D′ ⊂ X satisfying |D| = |D′| = d − 1, there exists z ∈ X
such that z ∈ N(D) ∩N(D′). Moreover, N(D)\{D′} = N(D′)\{D}.

Proof. Let D,D′ ⊂ X satisfy |D| = |D′| = d − 1. Let BD be the block neighborhood of D and
suppose |BD| = r. Let BD′ be the block neighborhood of D′ and suppose |BD′ | = s. From
Lemma 4.6, we have r, s ≥ 2.

As in the proof of Theorem 4.8, suppose there exists ` ∈ N(D) such that ` /∈ N(D′). We may, by
Lemma 4.5, set HC = {`}. Then by Lemma 4.4, we see that |BD\BHC | = r−1 and |BD′\BHC | = s.
Then since Alice’s strategy is perfectly (d− 1)-secure against Cathy, by Theorem 4.1, we also have
|BD\BHC | = |BD′\BHC |. This implies s = r − 1.

Similarly, suppose we have some `′ ∈ N(D′) such that `′ /∈ N(D). By Lemma 4.5, we may set
HC = {`′}. By the same argument as above, we have |BD′\BHC | = s−1 and |BD\BHC | = r. Since
|BD\BHC | = |BD′\BHC |, we conclude s = r + 1.

20



The above argument implies a contradiction if there exists both ` ∈ N(D) such that ` /∈ N(D′)
and `′ ∈ N(D′) such that `′ /∈ N(D). But if N(D) ∩N(D′) = ∅, such an ` and `′ must exist, since
r, s ≥ 2. Thus, we conclude that there exists z ∈ N(D) ∩N(D′).

Moreover, by Lemma 4.5, we may set HC = {z}. Then by Lemma 4.4, we see that |BD\BHC | =
r − 1 and |By\BHC | = s− 1. Then since Alice’s strategy is perfectly (d− 1)-secure against Cathy,
by Theorem 4.1, we also have |BD\BHC | = |BD′\BHC |. This implies r = s. But this also implies
that there cannot be ` ∈ N(D) such that ` /∈ N(D′) or `′ ∈ N(D′) such that `′ /∈ N(D). Thus we
conclude N(D)\{D′} = N(D′)\{D}, as desired.

Theorem 4.10. Suppose (a, b, c) = (d + 1, n − (d + 2), 1) satisfying b ≥ d − 1 and suppose that
Alice’s strategy is equitable, informative for Bob, and perfectly (d− 1)-secure against Cathy. Then
every announcement is a d− (n, d+ 1, 1)-design.

Proof. Fix an (d+ 1, n− (d+ 2), 1)-deal and suppose Alice’s strategy is equitable, informative for
Bob, and perfectly (d−1)-secure against Cathy. Consider a corresponding announcement Ai. Then
in particular, each hand of Ai has order d+ 1.

We first observe that Lemma 4.4 implies that any set of d elements of X occurs in at most one
hand of Ai. It remains to show that D = {x1, . . . , xd} occurs in exactly one hand of Ai for any
x1, . . . , xd ∈ X.

Write D′ = {x1, . . . , xd−1} and D′′ = {x2, . . . , xd}. By Lemma 4.9, there exists z ∈ X satisfying
z ∈ N(D′)∩N(D′′). (Note that this implies z 6= x1, . . . , xd.) That is, there exist hands HA, H

′
A ∈ Ai

satisfying D′ ∪ {z} ⊆ HA and D′′ ∪ {z} ⊆ H ′A.
Also by Lemma 4.9, we have

N(D′′)\{z, x2, . . . , xd−1} = N(z, x2, . . . , xd−1)\D′′.

This is equivalent to
N(D′′)\{z} = N(z, x2, . . . , xd−1)\{xd}.

Now D′∪{z} ⊆ HA implies x1 ∈ N(z, x2, . . . , xd−1). Given x1 6= z, xd, we conclude x1 ∈ N(D′′).
That is, D = D′′ ∪ {x1} occurs in some hand of Ai, as desired.

Example 4.1. The construction given in Example 3.1 is actually an example of a 2-equitable
(4, 3, 1)-strategy that is informative for Bob and perfectly 2-secure against Cathy. The fact that the
scheme is perfectly 2-secure follows from Lemma 4.2.

5 Discussion and Comparison with Related Work

As mentioned in Section 1, there are have been many papers studying the Russian cards problem and
generalizations of it. Here we concentrate on recent work that takes a combinatorial approach [1,
3, 2, 4].

Albert et al. [1] consider the card problem from both epistemic logic and combinatorial perspec-
tives, establishing axioms CA1, CA2, and CA3 that are roughly equivalent to our requirements for
a protocol to be informative and weakly 1-secure in the γ-equitable case. The difference is that the
authors [1] treat security on the announcement level; that is, they identify various announcements
as good if the relevant properties hold for any possible hand for Alice in the given announcement.
No assumption is made that, for every possible hand for Alice, an announcement is defined, or
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that a good announcement even exists. Our definitions, on the other hand, require that Alice have
a (secure) announcement for every possible hand HA ∈

(
X
a

)
. In particular, we argue that it is

not possible to formally define or discuss the security of a scheme using definitions that focus on
individual announcements.

The authors [1] present several useful results, some of which we have cited in this paper, on the
relationships between the parameters a and c, and b and c, as well as bounds on the minimum and
maximum number of hands in a good announcement. The focus is on the level of announcements
throughout: the authors argue that, to minimize information gained by Cathy, the size of the
announcement should be maximized. Moreover, the authors show good announcements exist for
some special cases, including using block designs for the case (a, 2, 1), when a ≡ 0, 4 (mod 6)
(corresponding to the Steiner triple systems), and using Singer difference sets for the case (a, b, c),
where a and c are given, and b is sufficiently large. A few other small cases are also given.

Atkinson and van Ditmarsch [3] extend these notions to include a new axiom, CA4, which
roughly corresponds to our notion of perfect 1-security. That is, the authors recognize the possibility
of card occurrence bias in a good announcement, which gives Cathy an advantage in guessing Alice’s
hand. Axiom CA4 introduces the requirement that, in the set of hands Cathy knows are possible
for Alice, each card Cathy does not hold occurs a constant number of times. In this setting, the
authors use binary designs to construct a good announcement (also satisfying CA4) for parameters
of the form (2k−1, 2k−1−1, 1), where k ≥ 3. Atkinson and van Ditmarsch also consider the problem
of unbiasing an announcement by applying a protocol that takes the existence of bias into account.
An example of two possible methods for achieving this are given for the parameter set (3, 3, 1).
We remark that our approach is much simpler and yields nice solutions for the (3, 3, 1) case. In
particular, we require fewer announcements and thereby less communication complexity.

Albert et al. [2] investigate both the problem of communicating the entire hand (or state infor-
mation) and communicating a secret bit. In effect, their notion of card/state safe is similar to our
notion of weak 1-security. The analysis includes a sum announcement protocol for the case (k, k, 1),
where k ≥ 3; that is, both players announce the sum of their cards modulo 2k + 1. In addition,
Albert et al. show that state safe implies bit safe, and pose the interesting open question of whether
a protocol for sharing a secret bit implies the existence of a protocol for sharing states/card deals.

Cordòn-Franco et al. [4] focus on the case c = 1, and present a protocol in which Alice and Bob
announce the sum of their hands modulo a given (public) integer. The authors deal with the case
of the modulus being either n (the size of the deck) or the least prime p larger than n, and show
that, by choosing one of these protocols as appropriate, deals of the form (a, b, 1) are secure (in the
weak 1-secure sense) and informative. That is, Alice and Bob learn each other’s cards, but Cathy
does not know any of Alice or Bob’s cards afterwards.

6 Conclusion and Open Problems

We have presented the first formal mathematical presentation of the generalized Russian cards
problem, and have provided rigorous security definitions that capture both basic and extended
versions of weak and perfect security notions. Using a combinatorial approach, we are able to give
a nice characterization of informative strategies having optimal communication complexity, namely
the set of announcements must be equivalent to a large set of t− (n, a, 1)-designs, where t = a− c.
We also provide some interesting necessary conditions for certain types of deals to be simultaneously
informative and secure. That is, for deals of the form (a, b, a−d), where b ≥ d− 1 and the strategy
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is assumed to be perfectly (d− 1)-secure, we show that a = d+ 1 and hence c = 1. Moreover, for
informative and perfectly (d − 1)-secure deals of the form (d + 1, b, 1) satisfying b ≥ d − 1, every
announcement must necessarily be a d− (n, d+ 1, 1)-design.

There are many open problems in the area, especially for deals with c > 1. An interesting
question is whether we can achieve generalizations of Theorems 3.11 and 3.8 without assuming
(d − 1) security. That is, we wish to study the case of deals satisfying c > 1, where perfect 1-
security holds. In particular, it is unclear if there even exist protocols that are simultaneously
informative for Bob and perfectly 1-secure against Cathy for deals with c > 1.
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