46 research outputs found

    Age of First Exposure Does Not Predict Quality of Life in Adult Rugby Players

    Get PDF
    Click the PDF icon to download the abstrac

    The gait and balance of patients with diabetes can be improved: a randomised controlled trial

    Get PDF
    Item does not contain fulltextAIMS/HYPOTHESIS: Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. METHODS: This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. RESULTS: The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. CONCLUSIONS/INTERPRETATION: Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT00637546 FUNDING: This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/1 maart 201

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury โ€“ the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    Electromyographic analysis of selected shoulder muscles during a rugby football tackle

    Get PDF
    Background: Epidemiological studies have shown that the incidence of shoulder injuries is increasing in rugby and the majority are related to the contact/tackle phase of play. However, no data currently exists that describes preparatory muscle activity during tackle. This information could aid in guiding training and rehabilitation, if available. The purpose of the study was to assess the sequence of onset of EMG activity of selected scapulohumeral muscles during rugby tackle. 15 healthy professional rugby players participated in the study. Surface EMG activity was assessed for timing of onset relative to time of impact during a modified tackle activity in pectorialis major, biceps brachii, latissimus dorsi, serratus anterior and infraspinatus muscles. Results: Onset of activity occurred in all muscles prior to impact. Factorial ANOVA showed significant differences between muscles in activation timing (p = 0.0001), paired t-tests revealed that serratus anterior was activated prior to all other muscles tested (p 0.05), except pectorialis major on all comparisons showed significantly later activation timing than all other muscles (p < 0.001). Conclusion: Muscle activation timing may if not properly balanced around the shoulder girdle expose the glenohumeral joint to excessive load and stress. This paper demonstrates a simple method which sets out some preliminary normative data in healthy players. Further studies relating these data to injured players are required
    corecore