103 research outputs found

    Structure–property relationship of defect-trapped Pt single-site electrocatalysts for the hydrogen evolution reaction

    Get PDF
    Single-site catalysts (SSCs) have attracted significant research interest due to their high metal atom utilization. Platinum single sites trapped in the defects of carbon substrates (trapped Pt-SSCs) have been proposed as efficient and stable electrocatalysts for the hydrogen evolution reaction (HER). However, the correlation between Pt bonding environment, its evolution during operation, and catalytic activity is still unclear. Here, a trapped Pt-SSC is synthesized by pyrolysis of H2PtCl6 chemisorbed on a polyaniline substrate. In situ heated scanning transmission electron microscopy and temperature-dependent X-ray photoelectron spectroscopy clarify the thermally induced structural evolution of Pt during pyrolysis. The results show that the nitrogen in polyaniline coordinates with Pt ions and atomically disperses them before pyrolysis and traps Pt sites at pyridinic N defects generated during the substrate graphitization. Operando X-ray absorption spectroscopy confirms that the trapped Pt-SSC is stable at the HER working potentials but with inferior electrocatalytic activity compared with metallic Pt nanoparticles. First principle calculations suggest that the inferior activity of trapped Pt-SSCs is due to their unfavorable hydrogen chemisorption energy relative to metallic Pt(111) surfaces. These results further the understanding of the structure–property relationship in trapped Pt-SSCs and motivate a detailed techno-economic analysis to evaluate their commercial applicability

    Transition from electron accumulation to depletion at β-Ga2O3 surfaces: The role of hydrogen and the charge neutrality level

    Get PDF
    The surface electronic properties of bulk-grown β-Ga2O3 (2⎯⎯01) single crystals are investigated. The band gap is found using optical transmission to be 4.68 eV. High-resolution x-ray photoemission coupled with hybrid density functional theory calculation of the valence band density of states provides insights into the surface band bending. Importantly, the standard linear extrapolation method for determining the surface valence band maximum (VBM) binding energy is found to underestimate the separation from the Fermi level by ∼0.5 eV. According to our interpretation, most reports of surface electron depletion and upward band bending based on photoemission spectroscopy actually provide evidence of surface electron accumulation. For uncleaned surfaces, the surface VBM to Fermi level separation is found to be 4.95 ± 0.10 eV, corresponding to downward band bending of ∼0.24 eV and an electron accumulation layer with a sheet density of ∼5 × 1012 cm−2. Uncleaned surfaces possess hydrogen termination which acts as surface donors, creating electron accumulation and downward band bending at the surface. In situ cleaning by thermal annealing removes H from the surface, resulting in a ∼0.5 eV shift of the surface VBM and formation of a surface electron depletion layer with upward band bending of ∼0.26 eV due to native acceptor surface states. These results are discussed in the context of the charge neutrality level, calculated bulk interstitial hydrogen transition levels, and related previous experimental findings

    Removal and Reoccurrence of LLZTO Surface Contaminants under Glovebox Conditions

    Get PDF
    The reactivity of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolytes to form lithio-phobic species such as Li2CO3 on their surface when exposed to trace amounts of H2O and CO2 limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like H2O and CO2 conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions. We find that annealing LLZTO at 600 °C in this atmosphere effectively removes the surface contaminants, but a significant level of contamination reappears upon cooling down. In contrast, HCl(aq) acid etching demonstrates superior Li2CO3 removal and stable surface chemistry post treatment. To avoid air exposure during the acid treatment, an anhydrous HCl solution in diethyl ether was used directly within the glovebox. This novel acid etching strategy delivers the lowest lithium/LLZTO interfacial resistance and the highest critical current density

    Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors

    Get PDF
    The electronic and optical properties of (InxGa{1–x})_{2}O_{3} alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In_{2}O_{3} phase to the monoclinic β-Ga_{2}O_{3} phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In_{2}O_{3} and use of Ga_{2}O_{3} as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential

    Direct Silicon Heterostructures With Methylammonium Lead Iodide Perovskite for Photovoltaic Applications

    Get PDF
    We investigated the formation of photovoltaic (PV) devices using direct n-Si/MAPI (methylammonium lead tri-iodide) two-sided heterojunctions for the first time (as a possible alternative to two-terminal tandem devices) in which charge might be generated and collected from both the Si and MAPI. Test structures were used to establish that the n-Si/MAPI junction was photoactive and that spiro-OMeTAD acted as a “pinhole blocking” layer in n-Si/MAPI devices. Two-terminal “substrate” geometry devices comprising Al/n-Si/MAPI/spiro-OMeTAD/Au were fabricated and the effects of changing the thickness of the semitransparent gold electrode and the silicon resistivity were investigated. External quantum efficiency and capacitance–voltage measurements determined that the junction was one-sided in the silicon—and that the majority of the photocurrent was generated in the silicon, with there being a sharp cutoff in photoresponse above the MAPI bandgap. Construction of band diagrams indicated the presence of an upward valence band spike of up to 0.5 eV at the n-Si/MAPI interface that could impede carrier flow. Evidence for hole accumulation at this feature was seen in both Kelvin-probe transients and from unusual features in both current–voltage and capacitance–voltage measurements. The devices achieved a hysteresis-free best power conversion efficiency of 2.08%, V OC 0.46 V, J SC 11.77 mA/cm2, and FF 38.4%, demonstrating for the first time that it is possible to create a heterojunction PV device directly between the MAPI and n-Si. Further prospects for two-sided n-Si/MAPI heterojunctions are also discussed

    Influence of Polymorphism on the Electronic Structure of Ga2O3

    Get PDF
    The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy efficient power electronic devices. Ga2_2O3_3 has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main β\beta-phase. Here, three polymorphs of Ga2_2O3_3, α\alpha, β\beta and ε\varepsilon, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga2_2O3_3 polymorphs as materials at the heart of future electronic device generations.Comment: Updated manuscript version after peer revie
    corecore