427 research outputs found
The association between antihypertensive treatment and serious adverse events by age and frailty: A cohort study
Background
Antihypertensives are effective at reducing the risk of cardiovascular disease, but limited data exist quantifying their association with serious adverse events, particularly in older people with frailty. This study aimed to examine this association using nationally representative electronic health record data.
Methods and findings
This was a retrospective cohort study utilising linked data from 1,256 general practices across England held within the Clinical Practice Research Datalink between 1998 and 2018. Included patients were aged 40+ years, with a systolic blood pressure reading between 130 and 179 mm Hg, and not previously prescribed antihypertensive treatment. The main exposure was defined as a first prescription of antihypertensive treatment. The primary outcome was hospitalisation or death within 10 years from falls. Secondary outcomes were hypotension, syncope, fractures, acute kidney injury, electrolyte abnormalities, and primary care attendance with gout. The association between treatment and these serious adverse events was examined by Cox regression adjusted for propensity score. This propensity score was generated from a multivariable logistic regression model with patient characteristics, medical history and medication prescriptions as covariates, and new antihypertensive treatment as the outcome. Subgroup analyses were undertaken by age and frailty. Of 3,834,056 patients followed for a median of 7.1 years, 484,187 (12.6%) were prescribed new antihypertensive treatment in the 12 months before the index date (baseline). Antihypertensives were associated with an increased risk of hospitalisation or death from falls (adjusted hazard ratio [aHR] 1.23, 95% confidence interval (CI) 1.21 to 1.26), hypotension (aHR 1.32, 95% CI 1.29 to 1.35), syncope (aHR 1.20, 95% CI 1.17 to 1.22), acute kidney injury (aHR 1.44, 95% CI 1.41 to 1.47), electrolyte abnormalities (aHR 1.45, 95% CI 1.43 to 1.48), and primary care attendance with gout (aHR 1.35, 95% CI 1.32 to 1.37). The absolute risk of serious adverse events with treatment was very low, with 6 fall events per 10,000 patients treated per year. In older patients (80 to 89 years) and those with severe frailty, this absolute risk was increased, with 61 and 84 fall events per 10,000 patients treated per year (respectively). Findings were consistent in sensitivity analyses using different approaches to address confounding and taking into account the competing risk of death. A strength of this analysis is that it provides evidence regarding the association between antihypertensive treatment and serious adverse events, in a population of patients more representative than those enrolled in previous randomised controlled trials. Although treatment effect estimates fell within the 95% CIs of those from such trials, these analyses were observational in nature and so bias from unmeasured confounding cannot be ruled out.
Conclusions
Antihypertensive treatment was associated with serious adverse events. Overall, the absolute risk of this harm was low, with the exception of older patients and those with moderate to severe frailty, where the risks were similar to the likelihood of benefit from treatment. In these populations, physicians may want to consider alternative approaches to management of blood pressure and refrain from prescribing new treatment
Testing robots using CSP
This paper presents a technique for automatic generation
of tests for robotic systems based on a domain-specific notation called RoboChart. This is a UML-like diagrammatic notation that embeds a component model suitable for robotic systems, and supports the definition of behavioural models using enriched state machines that can feature time properties. The formal semantics of RoboChart is given using tockCSP, a discrete-time variant of the process algebra CSP. In this paper, we use the example of a simple drone to illustrate an approach to generate tests from RoboChart models using a mutation tool called Wodel. From mutated models, tests are generated using the CSP model checker FDR. The testing theory of CSP justifies the soundness of the tests
Is Body Fat a Predictor of Race Time in Female Long-Distance Inline Skaters?
Purpose: The aim of this study was to evaluate predictor variables of race time in female ultra-endurance inliners in the longest inline race in Europe.
Methods: We investigated the association between anthropometric and training characteristics and race time for 16 female ultraendurance inline skaters, at the longest inline marathon in Europe, the ‘Inline One-eleven’ over 111 km in Switzerland, using bi- and multivariate analysis.
Results: The mean (SD) race time was 289.7 (54.6) min. The
bivariate analysis showed that body height (r=0.61), length of leg (r=0.61), number of weekly inline skating training sessions (r=-0.51)and duration of each training unit (r=0.61) were significantly correlated with race time. Stepwise multiple regressions revealed that body height, duration of each training unit, and age were the
best variables to predict race time.
Conclusion: Race time in ultra-endurance inline races such as the ‘Inline One-eleven’ over 111 km might be predicted by the following equation (r2 = 0.65): Race time (min) = -691.62 + 521.71 (body height, m) + 0.58 (duration of each training unit, min) + 1.78 (age, yrs) for female ultra-endurance inline skaters
Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation
Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments β-Catenin Signaling
Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6–9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a β-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding β-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of β-catenin signaling to oppose testis determination
Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis
Disorders of sex development (DSD), ranging in severity from mild genital abnormalities to complete sex reversal, represent a major concern for patients and their families. DSD are often due to disruption of the genetic programs that regulate gonad development. Although some genes have been identified in these developmental pathways, the causative mutations have not been identified in more than 50% 46,XY DSD cases. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to analyse copy number variation in 23 individuals with unexplained 46,XY DSD due to gonadal dysgenesis (GD). Here we describe three discrete changes in copy number that are the likely cause of the GD. Firstly, we identified a large duplication on the X chromosome that included DAX1 (NR0B1). Secondly, we identified a rearrangement that appears to affect a novel gonad-specific regulatory region in a known testis gene, SOX9. Surprisingly this patient lacked any signs of campomelic dysplasia, suggesting that the deletion affected expression of SOX9 only in the gonad. Functional analysis of potential SRY binding sites within this deleted region identified five putative enhancers, suggesting that sequences additional to the known SRY-binding TES enhancer influence human testis-specific SOX9 expression. Thirdly, we identified a small deletion immediately downstream of GATA4, supporting a role for GATA4 in gonad development in humans. These CNV analyses give new insights into the pathways involved in human gonad development and dysfunction, and suggest that rearrangements of non-coding sequences disturbing gene regulation may account for significant proportion of DSD cases
Resolving fluorescent species by their brightness and diffusion using correlated photon-counting histograms
Fluorescence fluctuation spectroscopy (FFS) refers to techniques that analyze fluctuations in the fluorescence emitted by fluorophores diffusing in a small volume and can be used to distinguish between populations of molecules that exhibit differences in brightness or diffusion. For example, fluorescence correlation spectroscopy (FCS) resolves species through their diffusion by analyzing correlations in the fluorescence over time; photon counting histograms (PCH) and related methods based on moment analysis resolve species through their brightness by analyzing fluctuations in the photon counts. Here we introduce correlated photon counting histograms (cPCH), which uses both types of information to simultaneously resolve fluorescent species by their brightness and diffusion. We define the cPCH distribution by the probability to detect both a particular number of photons at the current time and another number at a later time. FCS and moment analysis are special cases of the moments of the cPCH distribution, and PCH is obtained by summing over the photon counts in either channel. cPCH is inherently a dual channel technique, and the expressions we develop apply to the dual colour case. Using simulations, we demonstrate that two species differing in both their diffusion and brightness can be better resolved with cPCH than with either FCS or PCH. Further, we show that cPCH can be extended both to longer dwell times to improve the signal-to-noise and to the analysis of images. By better exploiting the information available in fluorescence fluctuation spectroscopy, cPCH will be an enabling methodology for quantitative biology
Parameter estimate of signal transduction pathways
BACKGROUND: The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. RESULTS: Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. CONCLUSION: Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data
- …