213 research outputs found

    Targeting smooth muscle microRNAs for therapeutic benefit in vascular disease.

    Get PDF
    In view of the bioinformatic projection that a third of all protein coding genes and essentially all biological pathways are under control of microRNAs (miRNAs), it is not surprising that this class of small RNAs plays roles in vascular disease progression. MiRNAs have been shown to be involved in cholesterol turnover, thrombosis, glucose homeostasis and vascular function. Some miRNAs appear to be specific for certain cells, and the role that such cell-specific miRNAs play in vascular disease is only beginning to be appreciated. A notable example is the miR-143/145 cluster which is enriched in mature and highly differentiated smooth muscle cells (SMCs). Here we outline and discuss the recent literature on SMC-expressed miRNAs in major vascular diseases, including atherosclerosis, neointima formation, aortic aneurysm formation, and pulmonary arterial hypertension. Forced expression of miR-145 emerges as a promising strategy for reduction and stabilization of atherosclerotic plaques as well as for reducing neointimal hyperplasia. It is concluded that if obstacles in the form of delivery and untoward effects of antimirs and mimics can be overcome, the outlook for targeting of SMC-specific miRNAs for therapeutic benefit in vascular disease is bright

    HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition.

    Get PDF
    Prior work demonstrated increased levels of hypoxia-inducible factor-1α (HIF-1α) in the bladder following outlet obstruction, associated with bladder growth and fibrosis. Here we hypothesized that HIF induction in outlet obstruction also switches energetic support of contraction from mitochondrial respiration to glycolysis. To address this hypothesis, we created infravesical outlet obstruction in female Sprague-Dawley rats and examined HIF induction and transcriptional activation. HIF-1α increased after 6 weeks of outlet obstruction as assessed by western blotting and yet transcription factor-binding site analysis indicated HIF activation already at 10 days of obstruction. Accumulation HIF-2α and of Arnt2 proteins were found at 10 days, providing an explanation for the lack of correlation between HIF-1α protein and transcriptional activation. HIF signature targets, including Slc2a1, Tpi1, Eno1 and Ldha increased in obstructed compared with sham-operated bladders. The autophagy markers Bnip3 and LC3B-II were also increased at 6 week of obstruction, but electron microscopy did not support mitophagy. Mitochondria were, however, remodeled with increased expression of Cox4 compared with other markers. In keeping with a switch toward glycolytic support of contraction, we found that relaxation by the mitochondrial inhibitor cyanide was reduced in obstructed bladders. This was mimicked by organ culture with the HIF-inducer dimethyloxalylglycine, which also upregulated expression of Ldha. On the basis of these findings, we conclude that HIF activation in outlet obstruction involves mechanisms beyond the accumulation of HIF-1α protein and that it results in a switch of the energetic support of contraction to anaerobic glycolysis. This metabolic adaptation encompasses increased expression of glucose transporters and glycolytic enzymes combined with mitochondrial remodeling. Together, these changes uphold contractility when mitochondrial respiration is limited.Laboratory Investigation advance online publication, 3 March 2014; doi:10.1038/labinvest.2014.48

    Lovastatin Induces Relaxation and Inhibits L-Type Ca2+ Current in the Rat Basilar Artery.

    Get PDF
    Statins inhibit cholesterol biosynthesis and protect against ischaemic stroke. It has become increasingly apparent that the beneficial effects of statin therapy may extend beyond lowering of serum cholesterol. The present study was done to explore possible pleiotropic statin effects at the level of the cerebral vascular smooth muscle. Lovastatin, lovastatin acid, simvastatin and pravastatin, were added to segments of the rat basilar artery and effects on contraction and Ca2+ handling were examined. Pravastatin had no effect on contraction. Simvastatin, lovastatin, and, to a lesser degree, lovastatin acid, caused relaxation (IC50=0.8, 1.9 and 22 μmol/l) of both intact and denuded arteries precontracted with 5-HT or high-K+. This effect was not reversed by mevalonate, suggesting that it was not related to cholesterol or isoprenoid metabolism. Relaxation was associated with a reduction of the intracellular Ca2+ concentration measured with Fura 2 and with a reduced Mn2+ quench rate, suggesting a direct effect on ion channels in the smooth muscle cell membrane. Current measurements in isolated and voltage clamped basilar artery muscle cells demonstrated that both lovastatin and lovastatin acid inhibit L-type Ca2+ current. We propose that lipophilicity is an important factor behind the effects of statins on vascular tone and that Ca2+ current inhibition is the likely mechanism of action

    Regulation of Ca2+ channel and phosphatase activities by polyamines in intestinal and vascular smooth muscle - implications for cellular growth and contractility.

    Get PDF
    Polyamines added extracellularly to intestinal and vascular smooth muscle cells cause relaxation through inhibition of Ca2+ channel activity. Intracellularly applied polyamines also affect Ca2+ channel properties. Polyamines do not readily pass over the plasma membrane because of their positive charges but in permeabilized smooth muscle preparations they have free access to the cytoplasm. In this system they increase sensitivity of the contractile machinery to Ca2+ through inhibition of myosin phosphatase activity. The magnitude of Ca2+ channel and phosphatase inhibition depends on the number of positive charges on the polyamine molecule. Polyamines have an obligatory, but yet undefined, role in regulation of cell growth and proliferation. Several groups of protein kinases, such as tyrosine and mitogen activated protein (MAP)-kinases transmit the growth signal from the plasma membrane to the cell nucleus where mitosis and protein synthesis are initiated. The data reviewed here show that polyamines may affect such signal transmission via inhibition of phosphatase activity

    Non-uniform changes in membrane receptors in the rat urinary bladder following outlet obstruction.

    Get PDF
    The aim of the present study was to investigate the expression and distribution of membrane receptors after bladder outlet obstruction (BOO). Partial bladder outlet obstruction (BOO) was induced in female rats and bladders were harvested after either 10 days or 6 weeks of BOO. The expression of different receptors was surveyed by microarrays and corroborated by immunohistochemistry and western blotting. A microarray experiment identified 10 membrane receptors that were differentially expressed compared to sham-operated rats including both upregulated and downregulated receptors. Four of these were selected for functional experiments on the basis of magnitude of change and relevance to bladder physiology. At 6 weeks of BOO, maximal contraction was reduced for neuromedin B and vasopressin (AVP), consistent with reductions of receptor mRNA levels. Glycine receptor-induced contraction on the other hand was increased and receptor mRNA expression was accordingly upregulated. Maximal relaxation by the β3-adrenergic receptor agonist CL316243 was reduced as was the receptor mRNA level. Immunohistochemistry supported reduced expression of neuromedin B receptors, V1a receptors and β3-adrenergic receptors, but glycine receptor expression appeared unchanged. Western blotting confirmed repression of V1a receptors and induction of glycine receptors in BOO. mRNA for vasopressin was detectable in the bladder, suggesting local AVP production. We conclude that changes in receptor expression following bladder outlet obstruction are non-uniform. Some receptors are upregulated, conferring increased responsiveness to agonist, whereas others are downregulated, leading to decreased agonist-induced responses. This study might help to select pharmacological agents that are effective in modulating lower urinary tract symptoms in BOO

    Expression of microRNAs is essential for arterial myogenic tone and pressure-induced activation of the PI3-kinase/Akt pathway.

    Get PDF
    The myogenic response is the intrinsic ability of small arteries to constrict in response to increased intraluminal pressure. Although microRNAs have been shown to play a role in vascular smooth muscle function, their importance in the regulation of the myogenic response is not known. In this study, we investigate the role of microRNAs in the regulation of myogenic tone by using smooth muscle-specific and tamoxifen-inducible deletion of the endonuclease Dicer in mice

    Association of muscarinic M(3) receptors and Kir6.1 with caveolae in human detrusor muscle.

    Get PDF
    Caveolae are 50-100nm large membrane invaginations that play a role in cellular signaling. The aim of the present study was to assess whether muscarinic M(3) receptors and the K(ATP) channel subunit Kir6.1 are associated with human detrusor caveolae, and to pharmacologically assess the relevance of this organization for contractility. Detrusor strips were dissected and used in ultrastructural, biochemical and mechanical studies. Caveolae were manipulated by cholesterol desorption using mβcd (methyl-β-cyclodextrin). Mβcd disrupted caveolae and caused a cholesterol-dependent ~3-fold rightward shift of the concentration-response curve for the muscarinic receptor agonist carbachol. The effect of mβcd was inhibited by the K(ATP) blockers glibenclamide, repaglinide and PNU-37883, and it was mimicked by the K(ATP) activator levcromakalim. Immunoelectron microscopy showed muscarinic M(3) receptors and Kir6.1 to be enriched in caveolae. In conclusion, pharmacological K(ATP) channel inhibition antagonizes the effect of caveolae disruption on muscarinic contractility in the human detrusor, and the K(ATP) channel subunit Kir6.1 co-localizes with M(3) receptors in caveolae

    Induction of angiotensin converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility.

    Get PDF
    MicroRNAs have emerged as regulators of smooth muscle cell phenotype with a role in smooth muscle-related disease. Studies have shown that miR-143 and miR-145 are the most highly expressed microRNAs in smooth muscle cells, controlling differentiation and function. The effect of miR-143/145 knockout has been established in the vasculature but not in smooth muscle from other organs. Using knockout mice we found that maximal contraction induced by either depolarization or phosphatase inhibition was reduced in vascular and airway smooth muscle but maintained in the urinary bladder. Furthermore, a reduction of media thickness and reduced expression of differentiation markers was seen in the aorta but not in the bladder. Supporting the view that phenotype switching depends on a tissue-specific target of miR-143/145, we found induction of angiotensin converting enzyme in the aorta but not in the bladder where angiotensin converting enzyme was expressed at a low level. Chronic treatment with angiotensin type-1 receptor antagonist restored contractility in miR-143/145-deficient aorta while leaving bladder contractility unaffected. This shows that tissue-specific targets are critical for the effects of miR-143/145 on smooth muscle differentiation and that angiotensin converting enzyme is one such target

    Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization

    Get PDF
    Producción CientíficaThe dynamic properties of the actin cytoskeleton in smooth muscle cells play an important role in a number of cardiovascular disease states. The state of actin does not only mediate mechanical stability and contractile function but can also regulate gene expression via myocardin related transcription factors (MRTFs). These transcriptional co-activators regulate genes encoding contractile and cytoskeletal proteins in smooth muscle. Regulation of small non-coding microRNAs (miRNAs) by actin polymerization may mediate some of these effects. MiRNAs are short non-coding RNAs that modulate gene expression by post-transcriptional regulation of target messenger RNA. In this study we aimed to determine a profile of miRNAs that were 1) regulated by actin/MRTF-A, 2) associated with the contractile smooth muscle phenotype and 3) enriched in muscle cells.The Swedish Research Council (grant 2012-2197)The Crafoord Foundation (grant 20150629)Instituto de Salud Carlos III (grant RD12/0042/0006)Ministerio de Economía, Industria y Competitividad (grant BFU2013-45867-R

    De Hintze a Afonso Costa: o fenómeno (anti)clerical na imprensa madeirense (1901-1910)

    Get PDF
    Os fenómenos de oposição e de defesa do cosmo clerical são testemunhos do percurso que o respeito pela alteridade teve que galgar ao longo da História. Acreditar que os registos desses comportamentos estão confinados ao passado é desconsiderar a incrível atualidade que as doutrinas de ódio, promovidas tanto pelo campo secular como pelo confessional, têm no globo. Através da análise textual a quatro periódicos madeirenses da primeira década do séc. XX, num intervalo temporal que vai desde a publicação do decreto de legalização das congregações através do modelo associativo, em 1901, ao crepúsculo da monarquia perante a república e a separação, em 1910, identificámos e segmentámos um vasto material, presente em centenas de edições analisadas, que configuram uma parte do corpus temático dessas duas correntes antinómicas, o clericalismo e o anticlericalismo, na Madeira. A religião que é capaz de mobilizar tanta fé como estigmas, molda as identidades individuais e coletivas de uma nação. Os ambientes que não estão providos de uma política religiosa plural e inclusiva, acabam por se contrair e perder a promoção de debates que irão conduzir a um cosmo de liberdade religiosa.The opposition and clerical universe defence phenomena are living testimonies of the path that the respect for otherness had to be built throughout History. The belief that the records of those behaviours are confined in the past is to disregard the astounding actuality that the hate doctrines, promoted not only by the secular but also by the confessional parties, have on the world. Through the textual analysis conducted in four Madeiran journals from the first decade of the 20th century, in a temporal interlude that goes from the publication of the congregations’ legalization diploma through the associative model, in 1901, to the monarchy twilight towards the republic and the eminent separation, in 1910, we identified and classified a vast sum of material, included in hundreds of analysed editions, that form a part of the thematic corpus from the two antinomic factions, the clericalism and the anti-clericalism, in Madeira. The religion that mobilizes such faith as stigmas, shapes the individual and collective identities of a nation. The environments that do not provide a plural and inclusive religious policy end up restraining and losing the promotion of debates that would lead to a universe of religious freedom
    corecore