264 research outputs found

    The Lifetimes of Phases in High-Mass Star-Forming Regions

    Full text link
    High-mass stars form within star clusters from dense, molecular regions, but is the process of cluster formation slow and hydrostatic or quick and dynamic? We link the physical properties of high-mass star-forming regions with their evolutionary stage in a systematic way, using Herschel and Spitzer data. In order to produce a robust estimate of the relative lifetimes of these regions, we compare the fraction of dense, molecular regions above a column density associated with high-mass star formation, N(H2) > 0.4-2.5 x 10^22 cm^-2, in the 'starless (no signature of stars > 10 Msun forming) and star-forming phases in a 2x2 degree region of the Galactic Plane centered at l=30deg. Of regions capable of forming high-mass stars on ~1 pc scales, the starless (or embedded beyond detection) phase occupies about 60-70% of the dense, molecular region lifetime and the star-forming phase occupies about 30-40%. These relative lifetimes are robust over a wide range of thresholds. We outline a method by which relative lifetimes can be anchored to absolute lifetimes from large-scale surveys of methanol masers and UCHII regions. A simplistic application of this method estimates the absolute lifetimes of the starless phase to be 0.2-1.7 Myr (about 0.6-4.1 fiducial cloud free-fall times) and the star-forming phase to be 0.1-0.7 Myr (about 0.4-2.4 free-fall times), but these are highly uncertain. This work uniquely investigates the star-forming nature of high-column density gas pixel-by-pixel and our results demonstrate that the majority of high-column density gas is in a starless or embedded phase.Comment: 10 pages, accepted to Ap

    Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    Get PDF
    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed

    A laboratory system for the investigation of rain fade compensation techniques for Ka-band satellites

    Get PDF
    The design and performance of a rain fade simulation/counteraction system on a laboratory simulated 30/20 GHz, time division multiple access (TDMA) satellite communications testbed is evaluated. Severe rain attenuation of electromagnetic radiation at 30/20 GHz occurs due to the carrier wavelength approaching the water droplet size. Rain in the downlink path lowers the signal power present at the receiver, resulting in a higher number of bit errors induced in the digital ground terminal. The laboratory simulation performed at NASA Lewis Research Center uses a programmable PIN diode attenuator to simulate 20 GHz satellite downlink geographic rain fade profiles. A computer based network control system monitors the downlink power and informs the network of any power threshold violations, which then prompts the network to issue commands that temporarily increase the gain of the satellite based traveling wave tube (TWT) amplifier. After the rain subsides, the network returns the TWT to the normal energy conserving power mode. Bit error rate (BER) data taken at the receiving ground terminal serves as a measure of the severity of rain degradation, and also evaluates the extent to which the network can improve the faded channel

    The Bolocam Galactic Plane Survey. XII. Distance Catalog Expansion Using Kinematic Isolation of Dense Molecular Cloud Structures With 13CO(1-0)

    Full text link
    We present an expanded distance catalog for 1,710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO+(3-2), NH3(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey 13CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region of the GRS 13CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of 13CO matched to the BGPS source. For objects with a HCO+(3-2) velocity, \approx 95% of the new 13CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and HII regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties \lesssim 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centarus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.Comment: 28 pages, 19 figures. Accepted for publication in ApJ. Distance-Omnibus code available at https://github.com/BGPS/distance-omnibu

    Facility for the evaluation of space communications and related systems

    Get PDF
    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links

    Vegetation Outlook (VegOut): Predicting Remote Sensing–Based Seasonal Greenness

    Get PDF
    Accurate and timely prediction of vegetation conditions enhances knowledge-based decision making for drought planning, mitigation, and response. This is very important in countries that are highly dependent on rainfed agriculture. For example, studies show that remote sensing–based observations and vegetation condition prediction have great potential for estimating crop yields (Verdin and Klaver, 2002; Ji and Peters, 2003; Seaquist et al., 2005; Tadesse et al., 2005a, 2008; Funk and Brown, 2006), which in turn may help to address agricultural development and food security issues, as well as improve early warning systems. Many studies have demonstrated the value of Vegetation Indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), calculated from satellite observations for assessing vegetation cover and conditions (Tucker et al., 1985; Roerink et al., 2003; Anyamba and Tucker, 2005; Seaquist et al., 2005), and such data have become a common source of information for vegetation monitoring. The term vegetation condition in this chapter refers to vegetation greenness or vegetation health, as inferred from canopy reflectance values measured by satellite observations (Mennis, 2001; Anyamba and Tucker, 2005). The vegetation greenness metric is commonly calculated from time-series NDVI (Reed et al., 1994) and represents the seasonal, time-integrated NDVI at a specific date, which has been shown to be representative of indicators of general vegetation health including net primary production (NPP) and green biomass (Tucker et al., 1985; Reed et al., 1996; Yang et al., 1998; Eklundh and Olsson, 2003; Hill and Donald, 2003). As a result, VIs and VI derivatives such as time-integrated VI can be used to characterize the temporal and spatial relationships between climate and vegetation and improve our understanding of the lagged relationship between climate (e.g., precipitation and temperature) and vegetation response (Roerink et al., 2003; Anyamba and Tucker, 2005; Seaquist et al., 2005; Camberlin et al., 2007; Groeneveld and Baugh, 2007). Quantitative descriptions of climate-vegetation response lags can then be used to identify and predict vegetation stress during drought

    Assessing the Vegetation Condition Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI)

    Get PDF
    The vegetation drought response index (VegDRI), which combines traditional climate- and satellite-based approaches for assessing vegetation conditions, offers new insights into assessing the impacts of drought from local to regional scales. In 2011, the U.S. southern Great Plains, which includes Texas, Oklahoma, and New Mexico, was plagued by moderate to extreme drought that was intensified by an extended period of recordbreaking heat. The 2011 drought presented an ideal case study to evaluate the performance of VegDRI in characterizing developing drought conditions. Assessment of the spatiotemporal drought patterns represented in the VegDRI maps showed that the severity and patterns of the drought across the region corresponded well to the record warm temperatures and much-below-normal precipitation reported by the National Climatic Data Center and the sectoral drought impacts documented by the Drought Impact Reporter (DIR). VegDRI values and maps also showed the evolution of the drought signal before the Las Conchas Fire (the largest fire in New Mexico’s history). Reports in the DIR indicated that the 2011 drought had major adverse impacts on most rangeland and pastures in Texas and Oklahoma, resulting in total direct losses of more than $12 billion associated with crop, livestock, and timber production. These severe impacts on vegetation were depicted by the VegDRI at subcounty, state, and regional levels. This study indicates that the VegDRI maps can be used with traditional drought indicators and other in situ measures to help producers and government officials with various management decisions, such as justifying disaster assistance, assessing fire risk, and identifying locations to move livestock for grazing

    The Drought Monitor Comes of Age

    Get PDF
    The 20th century featured immense scientific discoveries and advances. Astrophysics gained Einstein’s life-altering theory of relativity, opening the door to nuclear weaponry and the mind-bending Big Bang theory. The medical field achieved stunning success in suppressing or vanquishing a host of deadly diseases, including polio and smallpox. And through advances in computing technology, meteorological forecasting moved from backof- the-envelope calculations to supercomputers. However, drought monitoring fell behind the curve of scientific advancement. Not until 1965, when the U.S. Department of Commerce published Wayne C. Palmer’s “Research Paper No. 45: Meteorological Drought,” was there even a complex mathematical definition of drought. In his foreword, Palmer explained that “meteorological science has not yet come to grips with drought. It has not even described the phenomenon adequately.” The Palmer Drought Severity Index (PDSI) was the earliest attempt to describe an imbalance between water supply and water demand, by integrating water supply (precipitation) and water demand (evapotranspiration, as computed from temperature) in a water-budget calculation that also included water storage in the soil. It also established an intensity scale for drought and identified when drought began and ended. Yet the PDSI was never really designed for national drought monitoring, as Palmer’s focus was on the Great Plains and the western Corn Belt; born in 1915, he grew up in south-central Nebraska, shaped by the 1930s Dust Bowl. Clearly, Palmer did not create the PDSI from thin air. He worked for years perfecting his equations, and many of his studies of U.S. droughts of the 1890s, 1910s, 1930s, and 1950s were published in the federal Weekly Weather and Crop Bulletin and other outlets, including the Monthly Weather Review and the Bulletin of the American Meteorological Society. Though not among six dozen references listed in “Research Paper No. 45,” “A Simple Index of Drought Conditions,” an article by James McQuigg of the U.S. Weather Bureau published in a 1954 issue (Volume 7, Issue 3) of Weatherwise might have influenced Palmer. Palmer’s 1965 work, as remarkable as it was for that time, was not the final word on drought. In 1968, three years after introducing the PDSI, he added the complementary Crop Moisture Index, recognizing that drought affects agriculture and hydrology on differing time scales—and at different soil depths

    2018 NDMC ANNUAL

    Get PDF
    Contents01 From the director 02 Drought preparation toolkit tested in Nebraska available to all 03 Partnerships produce vulnerability assessments for tribes 04 Drought Monitor maps & stats localized for NWS offices 05 Producer workshops focus on latest drought management tools 06 2018 by the numbers 08 Where we were in 2018 10 New web-based form makes submitting drought observations easier 11 Five states began drought plan updates in 2018 12 Project brought drought management, monitoring skills to 4 countries 13 2018 Publication highlights 16 Collaboration 17 Team and partnership
    • …
    corecore