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1 Introduction 

Accurate and timely prediction of vegetation conditions enhances knowledge-based 
decision making for drought planning, mitigation, and response. This is very impor
tant in countries that are highly dependent on rainfed agriculture. For example, stud
ies show that remote sensing–based observations and vegetation condition predic-
tion have great potential for estimating crop yields (Verdin and Klaver, 2002; Ji and 
Peters, 2003; Seaquist et al., 2005; Tadesse et al., 2005a, 2008; Funk and Brown, 
2006), which in turn may help to address agricultural development and food secu-
rity issues, as well as improve early warning systems.

digitalcommons.unl.edu
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Many studies have demonstrated the value of Vegetation Indices (VIs), such 
as the Normalized Difference Vegetation Index (NDVI), calculated from satellite 
observations for assessing vegetation cover and conditions (Tucker et al., 1985; 
Roerink et al., 2003; Anyamba and Tucker, 2005; Seaquist et al., 2005), and such 
data have become a common source of information for vegetation monitoring. The 
term vegetation condition in this chapter refers to vegetation greenness or vegeta-
tion health, as inferred from canopy reflectance values measured by satellite obser-
vations (Mennis, 2001; Anyamba and Tucker, 2005). The vegetation greenness met-
ric is commonly calculated from time-series NDVI (Reed et al., 1994) and represents 
the seasonal, time-integrated NDVI at a specific date, which has been shown to be 
representative of indicators of general vegetation health including net primary pro-
duction (NPP) and green biomass (Tucker et al., 1985; Reed et al., 1996; Yang et al., 
1998; Eklundh and Olsson, 2003; Hill and Donald, 2003). As a result, VIs and VI de-
rivatives such as time-integrated VI can be used to characterize the temporal and 
spatial relationships between climate and vegetation and improve our understand-
ing of the lagged relationship between climate (e.g., precipitation and temperature) 
and vegetation response (Roerink et al., 2003; Anyamba and Tucker, 2005; Seaquist 
et al., 2005; Camberlin et al., 2007; Groeneveld and Baugh, 2007). Quantitative de-
scriptions of climate-vegetation response lags can then be used to identify and pre-
dict vegetation stress during drought.

Predicting vegetation conditions over large geographic areas is imperative for 
a wide range of applications such as crop and rangeland condition assessments, 
drought monitoring, fire risk potential, and ecological studies. However, predicting 
vegetation conditions and understanding the impact of drought on vegetation are 
challenging because vegetation health is dependent not only on climatic patterns 
but also on complex relationships involving soil characteristics, land use/land cover 
(LULC), topography, and other ecological characteristics. Improvements in our pre-
dictive capabilities in this area are becoming possible with the increasing availabil-
ity of many high-quality environmental data sets (e.g., climate, ocean, and remote 
sensing observations), longer historical records of observations, improved com-
puting capabilities, and the emergence of advanced data analysis techniques use-
ful for data mining.

Several studies have shown significant associations between indices of large-
scale oceanic/atmospheric variables and climate over North America (e.g., Panu and 
Sharma, 2002; Tadesse et al., 2005b; Baigorria et al., 2008; Martinez et al., 2009). For 
example, Tadesse et al. (2005b) indicated a connection between the occurrences of 
drought over Nebraska and the Southern Oscillation Index (SOI), Multivariate El Niño 
Southern Oscillation Index (MEI), Pacific North American Oscillation (PNA), Pacific 
Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). The importance of 
the Atlantic and tropical Pacific sea surface temperature (SST) on past and present 
drought occurrences across North America is emphasized by Feng et al. (2008) in 
understanding North American drought variability and predictability. Martinez et 
al., (2009) showed a strong correlation between the climate indices and oceanic in-
dices that are derived from the Pacific–North American pattern and tropical North 
Atlantic and eastern tropical Pacific SSTs to predict corn yields in the southeast-
ern United States. Since ocean–atmosphere interactions can drive precipitation pat-
terns affecting vegetation health, a suite of variables should be incorporated into 
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predictive models of vegetation conditions to capture the teleconnected climate–
vegetation response linkages.

In addition, the integration of satellite data with climate and oceanic data 
holds considerable potential for improving our capabilities to predict future veg-
etation conditions, as demonstrated in the work of Ji and Peters (2003) and Funk 
and Brown (2006). Using climate (monthly precipitation and relative humidity) 
and satellite (Advanced Very High Resolution Radiometer (AVHRR) NDVI) data, 
these studies indicated that NDVI is an effective indicator of vegetation-moisture 
conditions, but seasonal timing should be taken into consideration when moni-
toring drought with NDVI (Ji and Peters, 2003). At present, various high-quality 
climate, ocean, and remote sensing data sets with increasing length of records of 
more than 20 years are available to provide the historical basis to develop pre-
dictive techniques. In addition, the availability of advanced statistical data mining 
techniques such as regression tree analysis allows these diverse data sets to be 
effectively integrated into new vegetation-related models such as the Vegetation 
Drought Response Index (VegDRI) (Brown et al., 2008), upon which similar pre-
dictive models could be developed.

The National Drought Mitigation Center (NDMC), in partnership with the USDA 
Risk Management Agency (RMA), has developed a new drought monitoring tool 
called the Vegetation Outlook (VegOut) (Tadesse et al., 2005a, 2010). VegOut pro
vides outlooks of general vegetation conditions based on prior climate and ocean 
index measurements, satellite-based observations of current vegetation conditions, 
and other environmental information including ecological setting, elevation, soil 
characteristics, and LULC type. Regression tree modeling was used to analyze his
torical time-lag relationships between satellite-observed vegetation conditions and 
oceanic and climatic observations and to develop empirically-based models, which 
are applied to a suite of “current” observations to predict future vegetation condi
tions at multiple time steps such as 2, 4, and 6 week outlooks.

In this chapter, the VegOut methodology will be presented in terms of the spe
cific data inputs and predictive modeling approach. Results from two contrasting 
growing seasons (the 2008 drought and the 2009 nondrought years) over the cen-
tral United States will be presented to demonstrate the utility and potential of Veg-
Out for vegetation and drought monitoring. Future work to improve the current Veg-
Out method and other possible alternative approaches that have potential use for 
operational drought monitoring will also be discussed.

2 DATA AND METHODS

2.1 Study Area
The 15-state region of the central United States (Figure 1) provides a geograph-

ically diverse study area in terms of land cover types, land use practices, and climate 
across which to test the capability of VegOut. Land cover in this study area varies 
from alpine forests along the Rocky Mountains in the west and the forested regions 
of northern Minnesota to the west–east transition of shortgrass to tallgrass prai-
rie across the Great Plains states (e.g., Kansas, Nebraska, North Dakota, and South 
Dakota) and the sparsely vegetated shrubland of southern Texas and New Mexico. 
In addition, many parts of the study area are intensively cultivated, including the 
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corn–soybean–dominated Corn Belt (central Nebraska eastward through Illinois 
and northward into Minnesota), the Winter Wheat Belt (northern Texas, central 
Oklahoma, and south-central Kansas), and extensive tracts of irrigated and rainfed 
cropland stretching the length of the Great Plains from North Dakota to Texas. The 
study area also has a marked precipitation gradient ranging from 255 to 510 mm in 
the semiarid western locations to more than 1020 mm in the east. Growing season 
length is also highly variable, ranging from ∼125 days (mid-May to late September) 
in the extreme northern part of the study area to more than 250 days (late Febru-
ary to late November) in southern Texas.

2.2 General Overview of VegOut
The fundamental basis for developing a predictive vegetation condition tool 

such as VegOut is building a comprehensive and integrated database of long-term 
historical records of key observed variables (e.g., climate-based indices, ocean 
teleconnections, remote sensing–based VI, and other environmental character-
istics) that contribute information regarding the complex nature of vegetation 
growth. These data sets must be readily available over large areas to accurately 
represent the range of conditions that might be encountered over the spatial mod-
eling domain. In addition, access to these data sets in near real time is essential to 
the application of VegOut as an operational tool that is capable of generating in-
formational products in a timely manner to support a variety of decision-making 

Figure 1. Central U.S. study area, showing 1420 weather stations providing training and 
testing data used to develop the VegOut models. 
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activities. Figure 2 shows a graphical overview of the specific variables incorpo-
rated into VegOut as well as the general methodology, which includes historical da-
tabase development, rule generation for the model, and model application in the 
gridded image domain to produce the predicted seasonal greenness (SG) maps. 
VegOut uses rule-based regression tree models that make predictions of future 
vegetation conditions based on historical temporal and spatial relationships and 
patterns identified among satellite-derived VIs, climatic drought indices, oceanic 
indices, and other environmental variables.

The capability exists to predict SG several months into the future using VegOut. 
However, the predictive accuracy of VegOut decreases linearly as the prediction time 
interval increases (see Figure 3). The predictive accuracy of VegOut has been found 
to be greater than R2 = 0.8 for model outlook periods of 6 weeks or less. Although 
testing across a variety of potential predictive outlook intervals is important for un-
derstanding model capabilities and limitations, only the results from VegOut mod-
els for 2, 4, and 6 week vegetation outlook periods are presented in this chapter to 
illustrate the potential of this tool for predicting the vegetation SG.

SG is defined as the NDVI accumulated through time from the start of the 
growing season (SOS) to a specific date in the growing season, with the accumu-
lation continuing until the end of the growing season (EOS). Both the SOS and EOS 
are determined at the pixel level over the image domain from satellite-based time-
series NDVI data. Reed et al. (1994) and Brown et al. (2008) provide more detailed 
descriptions of the SG, SOS, and EOS calculations from time-series NDVI data. For 
each 1 km grid cell and for a given biweekly period, the predicted SG patterns pro-
duced by the VegOut model are based on the analysis of patterns observed in the 
historical records of satellite, climate, and oceanic observations over a 20 year pe-
riod (1989–2008). Also considered in the model are a set of general environmen
tal characteristics that remain static over time but provide a baseline geographic 
framework to facilitate spatial differentiation of the dynamic patterns. These his
torical records of patterns provide the basis to forecast future SG in the VegOut 
model. For example, if SG patterns are being predicted on July 11 for July 25 (i.e., a 
2 week vegetation outlook), then records in the historical database that exhibited 
similar relationships between the climatic, oceanic, satellite, and environmental 
variables would be used to predict the SG values. In short, a forward/backward 
time step approach (i.e., forward or backward time-lag relationship) involving the 
historical record among these variables is used to build the model to predict the 
SG. The specific input variables in the VegOut model (shown in Figure 2) are de-
scribed in the following section.

2.3 Historic Database Development

2.3.1 Satellite Data
A time series of standardized SG (SSG) observations produced from biweekly 

AVHRR 1 km NDVI data was calculated for each year in a 20 year historical record 
(1989–2008) to provide vegetation condition information for the VegOut models. 
First, SG is calculated, representing the accumulated NDVI through time from the 
SOS to the last day of each biweek using the following formula: 
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                            EOS  (=Pn)

         SG = ∑ (NDVIp – NDVIb)            (1)
                           p = SOS (=P1)

where
SG is the seasonal greenness
P1, P2, …, Pn refer to individual biweekly periods
NDVIp is the observed value in the AVHRR composite data
NDVIb is the latent (or baseline) NDVI value (representative of the nonvegetated 

background signal) defined at the SOS for each pixel (Reed et al., 1994)

The SSG metric is then calculated for each biweekly time step across each year 
in the historical record using the following standardization formula: 

      SSGi =
  SGi – SGi               (2)

                          σi

where
SGi is the current SG
SGi is the average SG observed in the historical record up to time period i
σ is the standard deviation of these historical SGi values (Tadesse et al., 2010)
The result is a 20 year historical time series of SSG images, which have zero-cen-

tered values in deviation units (ranging from −4.0 to +4.0) reflecting general vege-
tation conditions that are spatiotemporally comparable over both space and time 
because of the standardization process.

The other satellite-derived variable used in VegOut is the SOS anomaly (SOSA), 
which is the difference between the current year SOS date and the median 20 year 
historical SOS date. For each year in the historical record, a single SOSA value is cal-
culated at the pixel level across the image domain using a delayed moving average 
approach developed by Reed et al. (1994). SOSA is used to distinguish areas with low 
SSG attributable to a shift to a substantially later SOS date, which results in a shorter 
interval of accumulated NDVI and thus lower SSG. Such shifts often result from hu-
man-induced LULC change, and they also frequently occur in areas of low SSG that 
have an SOS date similar to the historical average but much lower NDVI values over 
the same period due to some type of environmental stress that can include drought 
and late-spring freeze.

2.3.2 Climate Data
The Standardized Precipitation Index (SPI) (McKee et al., 1995) is used to iden-

tify climatic patterns of meteorological dryness at 2 week intervals correspond-
ing to the biweekly periods of the satellite data across the 20 year record. The SPI 
is based on precipitation data and has the flexibility to detect both short- and long-
term precipitation deficits. Because the SPI has the inherent flexibility to be calcu-
lated over various time spans, an optimal SPI interval had to be selected for the cen-
tral United States. Exhaustive testing of all SPI intervals ranging from 1 to 51 weeks 
was conducted for each biweekly period across the growing season to determine 
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the specific interval that provided the best predictive accuracy within VegOut. For 
each SPI interval, a 20 year analysis of the 2, 4, and 6 week VegOut model results in-
corporating that specific SPI was conducted for each growing season biweekly pe-
riod across 1420 weather station locations within the 15-state study region (Figure 
1). The test results showed the 36 week SPI consistently provided the highest Veg-
Out model accuracy across most of the growing season, and it was selected as the 
SPI input for the VegOut models.

Point-based, tabular SPI data for each weather station location shown in Fig-
ure 1 were used to develop the empirically-based VegOut models. For model imple-
mentation and VegOut map production, the point-based SPI data were spatially in-
terpolated using an inverse distance weighting technique to create 1 km gridded 
SPI images.

2.3.3 Oceanic/Atmospheric Index Data
As stated earlier in this chapter, several studies have shown a teleconnective link 

between the oceanic and climate indices (Asner et al., 2000; Los et al., 2001; Barn-
ston et al., 2005; Tadesse et al., 2005b; Baigorria et al., 2008; Martinez et al., 2009). 
Understanding these relationships and using oceanic/atmospheric data help im-
prove vegetation monitoring and prediction by incorporating various complex pa-
rameters that influence vegetation health. Schubert et al. (2007) stated that mod-
eling work for drought prediction has largely attributed the major North American 
droughts of the last 150 years to global circulation anomalies that were forced by 
tropical SST. Based on the correlation coefficient values, however, it was observed 
that not all oceanic indices had a strong relationship with climate and vegetation re-
sponse over the central United States (Tadesse et al., 2009).

Seven of the most commonly used oceanic/atmospheric indices were selected 
for integration into the VegOut predictions of SSG to account for the temporal and 
spatial relationships between ocean–atmosphere dynamics and climate–vegeta-
tion interactions (i.e., teleconnection patterns) that have been observed over the 
Central United States. These indices include the Atlantic Multidecadal Oscillation 
(AMO), MEI, Madden–Julian Oscillation (MJO), PNA, PDO, SOI, and NAO. Data for 
each of these oceanic indices are freely available online from different sources 
(Tadesse et al., 2009). For each oceanic index, a single value is reported in a tabu-
lar format for each time interval across the historical record, which can vary from 
bimonthly to monthly updates. The historical, tabular oceanic index data adapted 
to the biweekly time step were used to develop VegOut models. For the mapping 
portion of VegOut, the single oceanic index value for a specific biweek was grid-
ded as a constant value over the 15-state study area to produce the series of 1 km 
oceanic index raster images.

2.3.4 Environmental Data
A set of five general environmental variables that describe aspects of the envi-

ronment that influence climate–vegetation interactions were incorporated into the 
VegOut model. These variables include LULC type, soil available water holding ca-
pacity (AWC), ecosystem type (Eco), percent of irrigated land (Percent_Irrig), and 



V e g O u t :  P r e d i c t i n g  R e m o t e  S e n s i n g – B a s e d  S e a s o n a l  G r e e n n e s s 83

elevation (Elev). The LULC input was derived from the 2001 National Land Cover 
Dataset (NLCD, Vogelmann et al., 2000) and is essential because the climate–vege
tation SG of different land cover types such as crops, forest, and grassland (DeBeurs 
and Henebry, 2004) may also have different response in vegetation condition. Soil 
AWC, which was derived from the USDA STATSGO data set (USDA, 1994), is also a 
critical parameter because it defines available moisture for plant growth, and vari-
ations in soil AWC can result in different responses from the same land cover type 
under similar climatic conditions. The percent irrigated agriculture variable derived 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agri-
culture Dataset (MIrAD) (Brown et al., 2009) was incorporated to stratify the land-
scape into areas of rainfed vegetation that are more sensitive to climate variations 
such as drought versus those irrigated areas that are less affected because of tar-
geted water applications. Elevation derived from the U.S. Geological Survey (USGS) 
30 m digital elevation model (DEM) was also included to account for the different 
altitudinal climate regions across which a land cover type may be found (e.g., alpine 
versus coastal evergreen forest). An ecoregion input (Omernik, 1987) was included 
to account for regional differences in the collective environmental setting (e.g., cli-
mate, topography, soils, and vegetation types) that a specific land cover type (e.g., 
grassland) might be located (e.g., mountains versus plains). Each of these environ-
mental variables was held constant over the 20 year study period because consis-
tent, seamless data sets reflecting changes in these variables over time are not avail-
able for the study area.

Zonal calculations within a 3-by-3 km square window (snapped to the 1 km 
AVHRR pixel grid) surrounding each weather station were used to extract data from 
the gridded climate, environmental, and satellite variables for inclusion in the histor
ical training database used to develop the VegOut models. For continuous variables 
such as percent irrigated agriculture, the mean value within each station window 
was calculated, and for categorical variables such as land cover type, the majority 
class within the window was used. Once the data were extracted for all station loca-
tions, they were merged with the tabular SPI and oceanic index data in a database 
used to train the VegOut models.

2.4 VegOut Model Development and Implementation
For VegOut model development, the dynamic climate, oceanic, and satellite vari-

ables in the training database were organized into a continuous time series of bi-
weekly observations across the 20 year historical record, while the environmental 
variables were assumed static over this period. Biweekly VegOut models were de-
veloped from historical data extracted for 1420 weather station locations across the 
study area (Figure 1) using commercial classification and regression tree (CART) 
modeling software called Cubist (Quinlan, 1993; Rulequest, 2010). These models 
serve to identify historical relationships over the 20 year record at each training 
site between observed vegetation SG, climate, and oceanic conditions for a specific 
biweekly period and the corresponding vegetation SG that occurred after that date 
at some future biweekly time period (e.g., 2 weeks). Individual models for the 2, 4, 
and 6 week vegetation outlooks were generated for each biweekly period across the 
May–October growing season. 
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2.5 Model Development
The algorithm underlying the VegOut model to predict SSG is based on a se-

ries of multiple linear regression equations defined by the CART-based Cubist soft-
ware through the analysis of the historical data discussed in the previous section. 
The model calculates the SSG value for future biweekly period t = i (e.g., t = 2 weeks 
into the future) by applying a set of linear regression equations associated with his-
torical periods in the database that exhibited similar patterns (or behavior) among 
the set of independent variables. To calculate the predicted value, the regression 
equation(s) is applied using the conditions of the current week (t = 0). The follow-
ing is the general form of the linear regression equation defined by Cubist that is ap-
plied to calculate the SSG for a future biweekly time period t = i: 

          VegOut(i) = f1,i(SSG, SOSA)t=0 + f2,i(SPI)t=0

                                +  f3,i(LULC, Eco, Percent_Irrig, AWC)t=0

                                + f4,i(MEI, MJO, NAO, PDO, SOI, AMO, PNA)t=0            (3)

where VegOut(i) is the predicted SSG at future biweekly time period i as a function 
of the current (t = 0) values of the input variables. The equation shows that the Veg-
Out is defined as four functions (f1, f2, f3, and f4) of the current (i.e., the date on which 
the SG prediction is made) climate, environmental, and satellite variables and the 
values of the oceanic indices, respectively.

2.6 VegOut Map Generation
For VegOut map production, the regression tree rules in the VegOut model 

for a specific biweekly period in the growing season are applied to the gridded 
image input data (as shown in Figure 2) for the corresponding biweekly period 
in a given year (e.g., June 10, 2010) using MapCubist software developed at the 
USGS Center for Earth Resources Observation and Science (EROS). The capabil-
ity exists to apply the model in near real time to current observational inputs to 
produce an up-to-date VegOut map or to apply it retrospectively to generate a 
map for that biweekly period for any year in the historical record. During model 
implementation, the values of all input variables for that specific period at each 
pixel are considered to identify which rule(s) in the VegOut rule set should be 
used, which in turn determines the linear regression equation(s) that will be ap-
plied to input data values to calculate a VegOut SSG value for each pixel across 
the study area. In many instances, multiple rules may apply to each pixel, result-
ing in multiple linear regression equations being applied, and the average value 
across all regression calculations is used as the predicted SSG. Operationally, the 
period-specific VegOut models can be sequentially applied for each biweekly pe-
riod across the year to generate a complete time series of 2, 4, and 6 week Veg-
Out maps for the growing season. 
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3 Results and Discussion

3.1 VegOut Predictive Accuracy across the Growing Season
Figure 3 shows the average correlation between predicted and observed SSG 

across all periods of the growing season for 20 years (1989–2008). Examination of 
the predictive accuracy of the VegOut model across the growing season shows that 
the model’s accuracy decreases linearly as the forecast interval increases. Based 
on these analyses, VegOut predictions presented in this chapter are limited to fore-
cast intervals associated with historical R2 values of 0.8 or higher (which were ob-
served for 2, 4, and 6 week forecasts) to illustrate the potential of this new predic-
tive approach.

Individual 2, 4, and 6 week VegOut forecasts for each biweekly period across the 
growing season (Figure 4) were constructed to assess their accuracy across the year 
as vegetation progresses through its various phenological stages. The results of this 
evaluation showed that the lowest predictive accuracy (R2 = 0.7–0.8) occurred in the 
early spring (April and early May) for all three outlooks. By late May, the accuracy of 
the outlooks exceeded an R2 value of 0.8 and was relatively stable for the remainder 
of the growing season. The lower R2 values during the spring phase may be due to 
low green biomass associated with early stages of vegetation green-up, resulting in 
greater fluctuation of the SSG values during this part of the year that is magnified by 
early season interannual temperature variations (e.g., late spring freeze) and land 
management decisions (e.g., crop planting times). The relatively high and stable pre
dictive accuracy of VegOut throughout the late spring and summer is encouraging 

Figure 3. Twenty-year (1989–2008) average R2 between the observed and predicted 
SSG values across the May–October growing season for outlook periods ranging from 
2 to 24 weeks. 
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for drought monitoring because this is an important period that determines crop 
yields and grassland production. The ability of VegOut to provide outlooks of vegeta-
tion SSG with reasonable accuracy over these critical months could provide new in-
sights into the early-stage identification of emerging agricultural drought conditions.

The predictive accuracy across the growing season was consistently highest 
for the 2-week outlook, with the R2 values slightly declining as the outlook inter-
val increased. This is expected because uncertainty in future SSG values will gener
ally increase with longer prediction intervals because of the increasing uncertainty 
of future states of the complex land–atmosphere system being modeled (Cushman-
Roisin and Beckers, 2008).

3.2 Spatial Pattern Assessment for Drought and Nondrought Years
VegOut maps showing 2, 4, and 6 week outlooks generated for a midsummer 

biweekly period during a drought year (2008) and nondrought year (2009) over 
the study area are examined to demonstrate the capabilities of VegOut to predict 
SSG patterns under contrasting climatic conditions. During these 2 years, with the 
exception of southern Texas, a large portion of the 15-state study area experienced 
drought conditions in 2008 and nondrought conditions in 2009, as shown by the U.S. 
Drought Monitor (USDM) maps in Figure 5a and b. In 2008, for example, large areas 
of extreme drought (D4 classification in the USDM) over western North Dakota and 

Figure 4. Twenty-year (1989–2008) average R2 between the observed and predicted 
SSG values for the 2-, 4-, and 6-week outlooks for each biweekly period during the 
growing season. 
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moderate to extreme drought (D2–D4 designation in the USDM) from western Ne-
braska southward through eastern Colorado, western Kansas, northwest Oklahoma, 
and parts of northern Texas were observed in the USDM (Figure 5a). However, in 
2009, the conditions had improved to a nondrought or abnormally dry (D0) classi-
fication over most these areas (Figure 5b). In contrast, eastern Minnesota, northern 
Wisconsin, northwest Montana, and parts of eastern New Mexico and central Okla-
homa were drier in 2009 than 2008.

Maps of the predicted SSG values for the 2, 4, and 6 week outlooks as forecast on 
June 30, 2008, and June 29, 2009, are shown in Figures 6b through d and 7b through 
d, respectively. The initial SSG conditions observed from AVHRR NDVI image data on 
forecast submission dates in 2008 and 2009 are presented in Figures 6a and 7a, re-
spectively. Figures 6e through g and 7e through g show the observed SSG patterns 
from AVHRR NDVI on the targeted dates of the three vegetation outlooks in 2008 and 
2009. The broad-scale spatial patterns of SSG depicted in the 2, 4, and 6 week VegOut 
forecasts produced across both summer seasons were in general agreement with ob-
served SSG patterns across the 15-state area in each corresponding period. Gener-
ally, the most substantial differences between the predicted and observed SSG were 
limited to small, localized areas in both years (Figures 6h through j and 7h through 
j). In an effort to highlight major differences between the predicted and observed 
SSG patterns in the difference maps, ±1 standard deviation thresholds were used 
to indicate pixels with excessive error. In 2008, there was good spatial agreement 
between the SSG patterns predicted in the three outlook maps and those observed 

Figure 5. USDM maps over the study area for (a) July 29, 2008 and (b) July 28, 2009. 
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from satellite over the drought-impacted areas. For example, the spatial extent and 
evolution of the lower SSG values observed by satellite over North Dakota and the 
High Plains (i.e., eastern Colorado and western Kansas) (Figure 6e through g) were 
consistent with those predicted by VegOut for the July and August dates (Figure 6b 
through d). In 2009, the spatial extent and magnitude of the SSG values were com-
parable between the VegOut results for the three predictive periods and the satel-
lite observations over the drought-impacted areas in northern Wisconsin and east-
ern New Mexico. These results suggest that the information presented in the series 
of vegetation outlooks could be used as an early indicator of the impact of drought 
conditions on vegetation in the near future.

In addition, the major high SSG landscape features observed for these 2008 
dates in Wisconsin and southwest Wyoming were also depicted in the series of Veg-
Out maps. The most notable difference during the 2008 drought year was the slight 
underestimation of SSG values over some locations with either extremely high (Wis-
consin) or low (south-central North Dakota) SSG values, particularly in the longer 6 

Figure 6. (a) Observed SSG for June 30, 2008; (b), (c), and (d) are 2, 4, and 6 week out-
looks; (e), (f), and (g) are observed SSG for July 15, July 28, and August 11 that corre-
spond to the 2, 4, 6 week outlooks, respectively; and (h), (i), and (j) show the differ­
ence between the predicted and observed greenness for the corresponding 2, 4, and 
6 week outlooks, respectively. 
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week outlook maps (Figure 6d and g). In 2009, strong spatial agreement was found 
between the predicted and observed SSG values across the 15 states for all three 
outlook periods. The main exceptions were the underestimation of some high SSG 
values observed over western North Dakota and intermediate SSG values over Wy-
oming and south-central Montana in the 4 and 6 week VegOut maps.

In general, the performance of VegOut was fairly robust over most of the central 
United States under both drought and nondrought conditions. The exception was 
over sparsely vegetated areas of New Mexico and southwest Texas, where persis-
tent differences were found in the form of both under- and over-predicted SSG val-
ues for the longer 4 and 6 week outlooks in 2008 and 2009. This discrepancy could 
be due to the dynamic range of SSG values (i.e., minimum to maximum SSG value 
range over the year), which is quite low in these sparsely vegetated landscapes; thus, 
a minimal difference between the predicted and observed SSG values will often ex-
ceed the one standard deviation threshold used to detect differences. However, in 
reality, those values may be very similar in comparison with the complete SSG value 
range for the entire study area.

Figure 7.  (a) Observed SSG for June 29, 2009; (b), (c), and (d) are 2, 4, and 6 week out-
looks; (e), (f), and (g) are observed SSG for July 13, July 27, and August 10 that corre-
spond to the 2, 4, 6 week outlooks, respectively; and (h), (i), and (j) show the differ­
ence between the predicted and observed greenness for the corresponding 2, 4, and 
6 week outlooks, respectively. 
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A visual comparison of the series of difference maps showed that the major-
ity of the study area did not have a notable difference between the observed and 
predicted SSG across all three outlook intervals for both study years. The majority 
of differences identified in the series of difference maps were distributed as small 
pockets for varying locations across the study area in both years. However, a closer 
inspection of these differences revealed several notable patterns and trends. First, 
the majority of marked differences flagged were associated with the underpredic-
tion of SSG values by VegOut. Second, the areal extent of these differences slightly in-
creased as the outlook period lengthened. This would be expected given the decline 
in predictive accuracy of the VegOut models observed from the 2 to 6 week inter-
val shown in Figure 3. Third, there was tendency by VegOut in some locations with 
extreme SSG values to underpredict the highest values and overpredict the lowest 
values. For example, the extremely low SSG values observed for western North Da-
kota and eastern Montana on July 28, 2008, (Figure 6f) were substantially under-
predicted in the 4 week outlook (see the green areas in Figure 6i). Another example 
for high SSG values occurred over western North Dakota on August 10, 2009, where 
the high observed SSG values (dark blue area in Figure 7g) were substantially under
estimated in the 6 week outlook (red area in Figure 7j). In general, the prediction of 
extreme values is challenging for any type of empirically based forecasting because 
there may not be representative events in the historical record used to develop the 
predictive models. However, these results show that the VegOut predictions do not 
contain a consistent bias to underpredict or overpredict extreme SSG values. Over-
all, the VegOut was found to predict comparable SSG values to those observed from 
satellite over the majority of the central United States, with the most substantial dif
ferences isolated to small geographic areas that had little impact on the overall SSG 
patterns depicted in the VegOut maps.

4 Future Directions

In an effort to enhance and extend VegOut as a predictive tool for mapping 
future vegetation conditions, several research activities are currently underway 
or planned in the near future. These include (1) expanded testing of VegOut over 
both the western and eastern United States and other regions of the world; (2) 
continued testing of longer outlook periods ranging from 3 to 6 months; (3) in-
corporating new variables such as remote sensing–based evapotranspiration, soil 
moisture, and land surface temperature, as well as refined sets of climate and 
oceanic indicators; and (4) testing and transitioning to VI data collected from 
new satellite sensors such as the MODIS and the Visible/Infrared Imager/Radi-
ometer Suite (VIIRS).

A “scenario-based” VegOut modeling approach called Scenario-VegOut is also be-
ing developed to complement the “diagnostic-based” VegOut approach presented in 
this chapter. Scenario-VegOut is designed to predict SG for different climatic episodes 
(i.e., dry, normal, and wet conditions) using the same regression tree–based model-
ing and input variables as the diagnostic VegOut model. This approach provides us-
ers the flexibility to project future vegetation SG under these different precipitation 
scenarios during defined outlook periods (e.g., 2 week interval of the 2 week out-
look). In this approach, Scenario-VegOut predictions are calculated for three possible 
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scenarios over 2, 4, and 6 week outlook periods that represent below-normal, near-
normal, and above-normal precipitation conditions. Scenario-VegOut will predict SG 
based on scenarios over each outlook period that represent dry conditions (e.g., 0%–
50% of average precipitation), near normal conditions (e.g., 75%–125% of normal 
precipitation), and wet conditions (e.g., more than 150% of average precipitation). 
For each scenario, the SPI grids will be generated from historical, station-based pre-
cipitation values for each of these targeted precipitation percentages. This approach 
has the flexibility to base outlooks on different percentages if desired.

5 Summary and Conclusion

Because of the varied and potentially costly losses caused by drought events, 
better tools for monitoring and predicting general vegetation conditions are needed 
to more effectively deal with this natural hazard. VegOut attempts to fill this need by 
predicting vegetation SG patterns based on analysis of satellite, climate, and oceanic 
data sets and other general environmental variables using an advanced data min-
ing technique. VegOut capitalizes on historical climate–vegetation interactions and 
teleconnections between the ocean and climate (such as El Niño and Southern Oscil-
lation [ENSO]) to generate these outlooks, while considering several static environ-
mental characteristics such as LULC type, irrigation status, soil characteristics, and 
ecological setting, which can influence vegetation’s response to weather conditions. 
The goal of VegOut is to provide timely information about future vegetation condi-
tions across large geographic areas, which can be used by drought experts to iden-
tify the early stages of vegetation drought stress and gain insight into the possible 
near-term trends in vegetation conditions. In addition to drought monitoring, VegOut 
information could also be used by agricultural producers, natural resource manag-
ers, and policy makers to make more informed decisions at local to regional scales.

The evaluation of the spatiotemporal performance of VegOut presented in this 
chapter across the 2008 and 2009 growing seasons found the models to have high 
predictive accuracy (R2 > 0.8) for the central United States and predicted SSG pat
terns in 2, 4, and 6 week outlook maps to have strong spatial agreement with ob-
served SSG patterns. The comparisons of the predicted and observed SSG patterns 
of the VegOut maps of the 2008 and 2009 summer seasons in this study showed 
that major differences between the predicted and observed SSG values (both un-
derprediction and overprediction) occurred primarily at a local scale over sparsely 
vegetated areas. This discrepancy occurs because the narrower, possibly more tail-
heavy dynamic ranges of SG values that frequently characterize sparsely vegetated 
areas reflect the more rapid changes in actual SG values for these regions (i.e., these 
regions are more sensitive to short-term climate fluctuations), which leads to in-
creased predictive uncertainty in the models and thus more frequent, larger model 
“misses.” Some disagreement was also found for some locations exhibiting both ex-
treme high and low SSG values, but was restricted to relatively isolated locations 
within the longer outlook periods. Although the examples shown in this chapter il-
lustrate the potential value of VegOut for predicting large-area vegetation condi-
tions, additional validation work is needed to fully understand this new predictive 
tool’s performance. This study was restricted to a limited number of midsummer 
dates, and similar evaluations should be performed across the entire growing season 
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and across the entire 20+ year historical record of observations that are available 
to generate the VegOut maps. In addition, further assessment of VegOut results un-
der varying levels of drought severity should be carried out to determine its ability 
to characterize both rapid and slow onset drought stress events.

Because VegOut maps and products integrate climate, satellite, and oceanic data 
as well as incorporate the environmental characteristics of the local areas to predict 
the vegetation condition with a reasonable accuracy, they can be used by agricul
tural producers, extension agents, early warning institutes, policy makers, and other 
stakeholders to make more informed decisions at the local levels.
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