63 research outputs found

    Differentiated, promoter-specific response of [4Fe-4S] NsrR DNA-binding to reaction with nitric oxide

    Get PDF
    NsrR is an iron-sulfur cluster protein that regulates the nitric oxide (NO) stress response of many bacteria. NsrR from Streptomyces coelicolor regulates its own expression and that of only two other genes, hmpA1 and hmpA2, which encode HmpA enzymes predicted to detoxify NO. NsrR binds promoter DNA with high affinity only when coordinating a [4Fe-4S] cluster. Here we show that reaction of [4Fe-4S] NsrR with NO affects DNA-binding differently depending on the gene promoter. Binding to the hmpA2 promoter was abolished at ~2 NO per cluster, while for the hmpA1 and nsrR promoters, ~4 and ~8 NO molecules, respectively, were required to abolish DNA binding. Spectroscopic and kinetic studies of the NO reaction revealed a rapid, multi-phase, non-concerted process involving up to 8 – 10 NO molecules per cluster, leading to the formation of several iron-nitrosyl species. A distinct intermediate was observed at ~2 NO per cluster, along with two further intermediates at ~4 and ~6 NO. The NsrR nitrosylation reaction was not significantly affected by DNA-binding. These results show that NsrR regulates different promoters in response to different concentrations of NO. Spectroscopic evidence indicates that this is achieved by different NO-FeS complexes

    Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn

    Get PDF
    Ferritins are multimers comprised of 4 α-helical bundle monomers that co-assemble to form protein shells surrounding an approximately spherical internal cavity. The assembled multimers acquire Fe2+ from their surroundings by utilising channels that penetrate the protein for the transportation of iron to diiron catalytic centres buried within the monomeric units. Here oxidation of the substrate to Fe3+ is coupled to the reduction of O2 and/or peroxide to yield the precursor to a ferric oxy hydroxide mineral that is stored within the internal cavity. The rhombic dodecahedral quaternary structure results in channels of 4-fold and 3-fold symmetry, located at the vertices, which are common to all 24mer-ferritins. Ferritins isolated from higher eukaryotes have been demonstrated to take up Fe2+ via the 3-fold channels. One of the defining features of ferritins isolated from prokaryotes is the presence of a further 24 channels, the B-channels, and these are thought to play an important role in Fe2+ uptake in this sub-family. SynFtn is an unusual ferritin isolated from the marine cyanobacterium Synechococcus CC9311. The reported structure of SynFtn derived from Fe2+ soaked crystals revealed the presence of a fully hydrated Fe2+ associated with three aspartate residues (Asp137 from each of the three symmetry related subunits) within each three-fold channel, suggesting that it might be the route for Fe2+ entry. Here, we present structural and spectro-kinetic data on two variants of SynFtn, D137A and E62A, designed to assess this possibility. Glu62 is equivalent to residues demonstrated to be important in the transfer of iron from the inner exit of the 3-fold channel to the catalytic centre in animal ferritins. As expected replacing Asp137 with a non-coordinating residue eliminated rapid iron oxidation by SynFtn. In contrast the rate of mineral core formation was severely impaired whilst the rate of iron transit into the catalytic centre was largely unaffected upon introducing a non-coordinating residue in place of Glu62 suggesting a role for this residue in release of the oxidised product. The identification of these two residues in SynFtn maps out major routes for Fe2+ entry to, and exit from, the catalytic ferroxidase centres

    An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis

    Get PDF
    Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2O2, DyPs form a high‐valent iron(IV)‐oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein‐bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein‐bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron‐transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron‐transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed

    Engineering tyrosine-based electron flow pathways in proteins: The case of aplysia myoglobin

    Get PDF
    Tyrosine residues can act as redox cofactors that provide an electron transfer ("hole-hopping") route that enhances the rate of ferryl heme iron reduction by externally added reductants, for example, ascorbate. Aplysia fasciata myoglobin, having no naturally occurring tyrosines but 15 phenylalanines that can be selectively mutated to tyrosine residues, provides an ideal protein with which to study such through-protein electron transfer pathways and ways to manipulate them. Two surface exposed phenylalanines that are close to the heme have been mutated to tyrosines (F42Y, F98Y). In both of these, the rate of ferryl heme reduction increased by up to 3 orders of magnitude. This result cannot be explained in terms of distance or redox potential change between donor and acceptor but indicates that tyrosines, by virtue of their ability to form radicals, act as redox cofactors in a new pathway. The mechanism is discussed in terms of the Marcus theory and the specific protonation/deprotonation states of the oxoferryl iron and tyrosine. Tyrosine radicals have been observed and quantified by EPR spectroscopy in both mutants, consistent with the proposed mechanism. The location of each radical is unambiguous and allows us to validate theoretical methods that assign radical location on the basis of EPR hyperfine structure. Mutation to tyrosine decreases the lipid peroxidase activity of this myoglobin in the presence of low concentrations of reductant, and the possibility of decreasing the intrinsic toxicity of hemoglobin by introduction of these pathways is discussed. © 2012 American Chemical Society

    Electron transfer from haem to the di-iron ferroxidase centre in bacterioferritin

    Get PDF
    The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di-nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins

    Naturally Occurring Disease-Related Mutations in the 40–57 Ω-Loop of Human Cytochrome c Control Triggering of the Alkaline Isomerization

    Get PDF
    American Chemical Society. Naturally occurring mutations found in one of the two ω-loop substructures in human cytochrome c are associated with low blood platelet count (thrombocytopenia). Both ω-loops participate in the formation of conformers associated with cytochrome c peroxidase activity and apoptotic function. At alkaline pH values, the Met80 ligand to the ferric heme iron dissociates, and a lysine residue in the 71-85 ω-loop coordinates to the iron. The alkaline isomerization has been the focus of extensive kinetic studies, and it is established that a deprotonation triggers the release of the Met80 ligand (pKtrigger). A second deprotonation stabilizes a pentacoordinate heme form (pKa2). In this study, site-directed variants at the 41 and 48 positions in the 40-57 ω-loop and at the 81 and 83 positions in the 71-85 ω-loop reveal that conformational transitions in the 71-85 ω-loop, leading to the alkaline or peroxidatic conformers, are controlled by the 40-57 ω-loop. We find that the variants causing thrombocytopenia, G41S and Y48H, lower the pKtriggerand increase pKa2. Our results are presented in a mechanistic framework, depicted by a cube, that accounts for the pH dependencies of the equilibrium and kinetic parameters governing the alkaline transition of the native protein and ω-loop variants. The data are most consistent with the trigger for Met80 replacement by a lysine being a deprotonation within a hydrogen bonded unit that links the two ω-loops rather than an individual group. Such a proposal aligns with the entatic contribution made by the same unit in controlling the Met80-Fe(III) bond strength
    corecore