563 research outputs found
Nanoparticle Doped Photopolymer with Reduced Shrinkage for Holographic Recording
We demonstrate holographic recording with Si-MFI zeolite doped acrylamide based photopolymerfilm. The influence of silicate nanoparticles on photopolymer shrinkage has been studied and compared withshrinkage in undoped photopolymer layers The shrinkage of the material (1.03%) is significantly lower forrecording in Si-MFI zeolite nanoparticle doped samples than for undoped layers (1.77%)
Holographic Recording in Nanoparticle-doped Photopolymer
A nanoparticle-doped acrylic photopolymer is characterised as a material for holographic recording. The influence of nanoparticles on the photopolymer dynamic range, dynamics of recording, temporal stability and mechanical stability in terms of shrinkage has been studied. The dynamics of recording and the temporal stability are investigated by real time monitoring of the build up of diffraction gratings of spatial frequencies of 200 to 2000 l/mm. The shrinkage has been characterised by recording slanted transmission gratings and observation of the change in the Bragg angle
Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holo
Polymerisation-induced shrinkage is one of the main reasons why many photopolymer materials are not used for certain applications including holographic optical elements and holographic data storage. Here, two compositional changes for the reduction of shrinkage in an acrylamide-based photopolymer are reported. A holographic interferometric technique was used to study changes in the dynamics of the shrinkage processes occurring in the modified photopolymer during holographic recording in real time. Firstly, the effect of the replacement of the acrylamide monomer in the photopolymer composition with a larger monomer molecule, diacetone acrylamide, on polymerisation-induced shrinkage has been studied. A reduction in relative shrinkage of 10–15% is obtained using this compositional change. The second method tested for shrinkage reduction involved the incorporation of BEA-type zeolite nanoparticles in the acrylamide-based photopolymer. A reduction in relative shrinkage of 13% was observed for acrylamide photopolymer layers doped with 2.5% wt. BEA zeolites in comparison to the undoped photopolymer
Holographic Recording in Charged Photopolymerisable Nanocomposites
Self – processing photopolymers have a large number of different applications due to their versatile properties as holographic recording materials. A significant effort has been directed towards the development of photopolymers for holographic data storage [1, 2], holographic sensors [3], holographic optical elements [4] and display holograms [5]. The Centre for Industrial and Engineering Optics has been developing acrylamide based photopolymers for the last decade [6-8]. The main parameters requiring improvement in these types of photopolymers are their dynamic range and their mechanical stability during the holographic recording. Recently we have successfully used zeolite nanoparticles as dopants in order to increase the dynamic range and lower the shrinkage in acrylamide-based photopolymers [9]. The advantages of using zeolite nanoparticles in colloidal form are their stability in water suspension: they have the same pH as the photopolymer and can be synthesized with different shape, size and chemical composition. Depending on the chemical composition and types of the structure, the zeolites will exhibit variable refractive index. Among the different types of zeolite nanoparticles used for doping of photopolymers, the pure silica MFI (Si-MFI) has shown the best results [9]. Having in mind that the zeolites are negatively surface charged it is expected to be an appropriate dopant for photopolymers [10]. We studied the effect of the charging of the photosensitive layers on their holographic recording properties. The charging was achieved by exposure to corona discharge. Different types of charges – positive and negative were deposited on the layer surfaces. It was observed that their presence influences the diffraction efficiency of recording
A Compact Electronic Speckle Pattern Interferometry System using a Photopolymer Reflection Holographic Optical Element
A simple and compact electronic speckle pattern interferometry system using a reflection holographic optical element is presented. The reflection holographic optical element is recorded on an acrylamide based photopolymer formulated and prepared at the Centre for Industrial & Engineering Optics. Light intensity of 40mW/cm2 with an exposure time of 60 seconds was used in fabricating the holographic optical element. The vibration mode patterns of a 4 cm diameter thin circular sheet of brass metal attached to a 4 cm diameter paper cone loud speaker are presented
Optical Properties of Photopolymerisable Nanocomposites Containing Zeolite Nanoparticles
Acrylamide-based photopolymerisable nanocomposites containing three different types of nanozeolites – Si-MFI, AlPO and BEA, were studied. The influence of the porous nanoparticles on the average refractive index, optical scattering, holographic recording properties and shrinkage were characterised
Insight on MWW siliceous zeolites: From 2D precursors toward 3D structure
ITQ-1 layered zeolites, with MWW framework, were prepared using different synthesis and calcination procedures and fully characterized by means of X-ray diffraction, scanning electron microscopy, N2 sorption and vibrational and nuclear magnetic resonance spectroscopies. Exploring different compositions of the precursor gel, the role of the Organic Structure Directing Agent (OSDA) was definitely disclosed. We proved that the concentration of OSDA in the synthesis gel affects the short-range crystalline order of zeolite crystals. In particular, diluted precursor gels led to the formation of low-density materials in the form of hollow spheres, with partially disordered layers, thinner crystals and high defectivity. In general, all ITQ-1 samples had the same crystalline structure but different morphology, either rose-like or hollow spheres. Moreover, the calcination procedure had an impact on the structural defects of the ITQ-1 zeolite: the higher the removal rate of the OSDA, the higher the defectivity degree of the zeolite
CO2 Adsorption/Desorption in FAU Zeolite Nanocrystals: In Situ Synchrotron X-ray Powder Diffraction and in Situ Fourier Transform Infrared Spectroscopic Study
International audienceThe host–guest and guest–guest interactions governing the CO2 adsorption/desorption in two nanosized zeolite samples with FAU framework type and different Si/Al ratios (Na–X Si/Al = 1.24 and Na–Y Si/Al = 2.54) and cation distribution were investigated by in situ synchrotron high-resolution X-ray powder diffraction (XRPD) and in situ Fourier transform infrared (FTIR) spectroscopy. The two complementary techniques allow probing the CO2 adsorption/desorption in the FAU zeolites at different levels, that is, average structure by XRPD versus local structure by FTIR spectroscopy . The presence of physisorbed CO2 molecules in both zeolites was detected by XRPD, whereas only a high amount of chemisorbed CO2 in the Na–X zeolite was found. The presence of unshielded Na cations and H2O molecules in the supercage of the Na–X sample induces the formation of stable bidentate bicarbonate groups. Evacuating CO2-loaded samples resulted in the efficient removal of physisorbed CO2 from both nanosized zeolites; on the contrary, high temperature is required to remove the chemisorbed species from the nanosized Na–X zeolite. Understanding the CO2 sorption behavior and capacity of nanosized zeolites is of great importance in broadening their use in environmental, clinical, and biomedical applications
Recent and Emerging Applications of Holographic Photopolymers and Nanocomposites
Sensing applications of holograms may be based on effects such as change in the spacing of the recorded fringes in a holographic diffraction grating in the presence of an analyte so that the direction of the diffracted laser light changes, or, in the case of a white light reflection grating, the wavelength of the diffracted light changes. An example is a reflection grating which swells in the presence of atmospheric moisture to indicate relative humidity by a change is the colour of the diffracted light. These devices make use of the photopolymer’s ability to absorb moisture. In a more versatile approach one can add inorganic nanoparticles to the photopolymer composition. These nanoparticles have refractive indices that are different from that of the bulk photopolymer. During the holographic recording of diffraction gratings, the polymerisation and accompanying diffusion processes cause redistribution of the nanoparticles enhancing the holographic diffraction efficiency. Zeolite nanoparticles have the form of hollow cages enabling them to trap analyte molecules of appropriate sizes. The refractive index of the nanoparticle-analyte combination is normally different from that of the nanoparticles alone and this alters the refractive index modulation of the recorded grating, leading to a change in diffraction efficiency and hence of the strength of the diffracted light signal. Yet another approach makes use of a principle which we call dye deposition holography. The analyte is labelled using a dye which acts as a photosensitiser for the polymerisation process. When the analyte labeled is deposited on a layer containing the other photopolymer components photopolymerisation can take place. If the illumination is in the form of an interference pattern, a diffraction grating is formed, in the region where dye has been deposited. In this way the formation of a holographic diffraction grating itself becomes a sensing action with the potential for extremely high signal to noise ratio. The method also allows fabrication of photonic devices by direct writing, using photosensitising dye, of structures such as Fresnel zone plate lenses and waveguides onto the photopolymer layer followed by exposure to spatially uniform light. Our work on HDS is concerned with enhancing the diffraction efficiency of user selected very weak diffraction gratings by illumination with a single beam at the Bragg angle. Light in the illuminating beam is coupled into the diffracted beam and the two interfere to enhance the grating strength. In this way grating diffraction efficiency can be raised above a threshold so that a binary zero can be changed to binary one. A large number of identical weak holographic gratings may be multiplexed into the recording medium at the manufacturing stage, for user selection at the data recording stage. In this way consumer HDS systems could be made much more simply and cheaply than at present
Scalable solvent-free synthesis of aggregated nanosized single-phase cancrinite zeolite
Pure cancrinite zeolite was prepared using a solvent-free method from a geophagic clay. The morphology of the zeolite could be controlled through the composition of the raw mixture. Aluminum sulfate octadecahydrate was used for the first time as a source of trace water in the solvent-free synthesis of a zeolite. Aggregated nanosized single-phase cancrinite zeolite were prepared using a mixture of the clay, aluminum sulfate octadecahydrate and sodium hydroxide. The mixture was manually mixed and heated at 150 °C for 6 h. Scaling up the synthesis to 2, 4 and 8 times resulted in products with remarkably consistent textural characteristics. The cancrinite prepared showed potential for use as a low-cost adsorbent for CO2 capture at very low CO2 concentrations
- …