235 research outputs found

    Pulmonary ventilation defects in older never-smokers

    Get PDF
    Hyperpolarized (3)He MRI previously revealed spatially persistent ventilation defects in healthy, older compared with healthy, younger never-smokers. To understand better the physiological consequences and potential relevance of (3)He MRI ventilation defects, we evaluated (3)He-MRI ventilation-defect percent (VDP) and the effect of deep inspiration (DI) and salbutamol on VDP in older never-smokers. To identify the potential determinants of ventilation defects in these subjects, we evaluated dyspnea, pulmonary function, and cardiopulmonary exercise test (CPET) measurements, as well as occupational and second-hand smoke exposure. Fifty-two never-smokers (71 ± 6 yr) with no history of chronic respiratory disease were evaluated. During a single visit, pulmonary function tests, CPET, and (3)He MRI were performed and the Burden of Obstructive Lung Disease questionnaire administered. For eight of 52 subjects, there was spirometry evidence of airflow limitation (Global Initiative for Chronic Obstructive Lung Disease-Unclassified, I, and II), and occupational exposure was reported in 13 of 52 subjects. In 13 of 52 (25%) subjects, there were no ventilation defects and in 39 of 52 (75%) subjects, ventilation defects were observed. For those subjects with ventilation defects, six of 39 showed a VDP response to DI/salbutamol. Ventilation heterogeneity and VDP were significantly greater, and forced expiratory volume in 1 s (FEV1)/forced vital capacity was significantly lower (P \u3c 0.05) for subjects with ventilation defects with a response to DI/salbutamol than subjects with ventilation defects without a response to DI/salbutamol and subjects without ventilation defects. In a step-wise, forward multivariate model, FEV1, inspiratory capacity, and airway resistance significantly predicted VDP (R(2) = 0.45, P \u3c 0.001). In conclusion, most never-smokers had normal spirometry and peripheral ventilation defects not reversed by DI/salbutamol; such ventilation defects were likely related to irreversible airway narrowing/collapse but not to dyspnea and decreased exercise capacity

    What are ventilation defects in asthma?

    Get PDF
    BACKGROUND: Hyperpolarised (3)He MRI provides a way to visualise regional pulmonary functional abnormalities that in asthma are thought to be related to airway morphological abnormalities. However, the exact aetiology of ventilation defects in asthma is not well understood. OBJECTIVE: To better understand the determinants of ventilation defects in asthma, we evaluated well-established clinical as well as (3)He MRI and X-ray CT airway measurements in healthy subjects and subjects with asthma. METHODS: Thirty-four subjects (n=26 subjects with asthma, n=8 healthy volunteers) underwent MRI, spirometry, plethysmography, fraction of exhaled nitric oxide analysis, methacholine challenge and CT for a region-of-interest proximal to ventilation defects. For subjects who consented to CT (n=18 subjects with asthma, n=5 healthy volunteers), we evaluated 3(rd) to 5th generation airway wall area and wall thickness per cent and lumen area. RESULTS: Seventeen subjects with asthma (17/26=65%) had visually obvious evidence of (3)He ventilation defects prior to bronchoprovocation and nine subjects with asthma had no ventilation defects prior to bronchoprovocation (9/26=35%). Subjects with asthma with defects were older (p=0.01) with worse forced expiratory volume in 1 s (FEV1)/forced vital capacity (p=0.0003), airways resistance (p=0.004), fraction of exhaled nitric oxide (p=0.03), greater bronchoprovocation concentration of methacholine that reduced FEV1 by 20% (p=0.008) and wall thickness per cent (p=0.02) compared with subjects with asthma without defects. There was a moderate correlation for wall area per cent with ventilation defect per cent (r=0.43, p=0.04). CONCLUSIONS: Subjects with asthma with (3)He ventilation defects were older with significantly worse airway hyper-responsiveness, inflammation and airway remodelling but similar FEV1 as subjects with asthma without defects; hyperpolarised (3)He ventilation abnormalities were spatially and quantitatively related to abnormally remodelled airways

    On the role of abnormal DL(CO) in ex-smokers without airflow limitation: symptoms, exercise capacity and hyperpolarised helium-3 MRI

    Get PDF
    BACKGROUND: The functional effects of abnormal diffusing capacity for carbon monoxide (DLCO) in ex-smokers without chronic obstructive pulmonary disease (COPD) are not well understood. OBJECTIVE: We aimed to evaluate and compare well established clinical, physiological and emerging imaging measurements in ex-smokers with normal spirometry and abnormal DLCO with a group of ex-smokers with normal spirometry and DLCO and ex-smokers with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I COPD. METHODS: We enrolled 38 ex-smokers and 15 subjects with stage I COPD who underwent spirometry, plethysmography, St George\u27s Respiratory Questionnaire (SGRQ), 6 min Walk Test (6MWT), x-ray CT and hyperpolarised helium-3 ((3)He) MRI. The 6MWT distance (6MWD), SGRQ scores, (3)He MRI apparent diffusion coefficients (ADC) and CT attenuation values below -950 HU (RA950) were evaluated. RESULTS: Of 38 ex-smokers without COPD, 19 subjects had abnormal DLCO with significantly worse ADC (p=0.01), 6MWD (p=0.008) and SGRQ (p=0.01) but not RA950 (p=0.53) compared with 19 ex-smokers with normal DLCO. Stage I COPD subjects showed significantly worse ADC (p=0.02), RA950 (p=0.0008) and 6MWD (p=0.005), but not SGRQ (p=0.59) compared with subjects with abnormal DLCO. There was a significant correlation for (3)He ADC with SGRQ (r=0.34, p=0.02) and 6MWD (r=-0.51, p=0.0002). CONCLUSIONS: In ex-smokers with normal spirometry and CT but abnormal DLCO, there were significantly worse symptoms, 6MWD and (3)He ADC compared with ex-smokers with normal DLCO, providing evidence of the impact of mild or early stage emphysema and a better understanding of abnormal DLCO and hyperpolarised (3)He MRI in ex-smokers without COPD

    Review of hyperpolarized pulmonary functional 129Xe MR for long-COVID

    Get PDF
    The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020–2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID

    Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch

    Get PDF
    Part of the Lecture Notes in Computer Science book series (LNCS, volume 4230).Also part of the Lecture Notes in Bioinformatics book sub series (volume 4230).International audienceWe propose to model the dynamics of gene regulatory networks as concurrent processes in the stochastic pi calculus. As a first case study, we show how to express the control of transcription initiation at the lambda switch, a prototypical example where cooperative enhancement is crucial. This requires concurrent programming techniques that are new to systems biology, and necessitates stochastic parameters that we derive from the literature. We test all components of our model by exhaustive stochastic simulations. A comparison with previous results reported in the literature, experimental and simulation based, confirms the appropriateness of our modeling approach

    Substrate Micropatterning as a New in Vitro Cell Culture System to Study Myelination

    Get PDF
    Artículo de publicación ISIMyelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate. In this new coculture system, neurons survive for several weeks, extending long axons on defined Matrigel tracks. On these axons, myelinating cells can achieve robust myelination, as demonstrated by the distribution of compact myelin and nodal markers. Under these conditions, neurites and associated myelinating cells are easily accessible for studies on the mechanisms of myelin formation and on the effects of axonal damage on the myelin sheath.Regenerative Medicine and Nanomedicine Initiative of the Canadian Institutes of Health Research (CIHR) RMF-7028 FONDECYT 1080252 CIHR Ministry of Industry of Canada Rio Tinto Alcan Molson Foundatio

    Supine posture changes lung volumes and increases ventilation heterogeneity in cystic fibrosis

    Get PDF
    INTRODUCTION: Lung Clearance Index (LCI) is recognised as an early marker of cystic fibrosis (CF) lung disease. The effect of posture on LCI however is important when considering longitudinal measurements from infancy and when comparing LCI to imaging studies. METHODS: 35 children with CF and 28 healthy controls (HC) were assessed. Multiple breath washout (MBW) was performed both sitting and supine in triplicate and analysed for LCI, Scond, Sacin, and lung volumes. These values were also corrected for the Fowler dead-space to create 'alveolar' indices. RESULTS: From sitting to supine there was a significant increase in LCI and a significant decrease in FRC for both CF and HC (p<0.01). LCI, when adjusted to estimate 'alveolar' LCI (LCIalv), increased the magnitude of change with posture for both LCIalv and FRCalv in both groups, with a greater effect of change in lung volume in HC compared with children with CF. The % change in LCIalv for all subjects correlated significantly with lung volume % changes, most notably tidal volume/functional residual capacity (Vtalv/FRCalv (r = 0.54,p<0.001)). CONCLUSION: There is a significant increase in LCI from sitting to supine, which we believe to be in part due to changes in lung volume and also increasing ventilation heterogeneity related to posture. This may have implications in longitudinal measurements from infancy to older childhood and for studies comparing supine imaging methods to LCI

    MMP-28 as a regulator of myelination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinase-28 (MMP-28) is a poorly understood member of the matrix metalloproteinase family. Metalloproteinases are important mediators in the development of the nervous system and can contribute to the maturation of the neural micro-environment.</p> <p>Results</p> <p>MMP-28 added to myelinating rat dorsal root ganglion (DRG) co-cultures reduces myelination and two antibodies targeted to MMP-28 (pAb180 and pAb183) are capable of binding MMP-28 and inhibiting its activity in a dose-dependent manner. Addition of 30 nM pAb180 or pAb183 to rat DRG cultures resulted in the 2.6 and 4.8 fold enhancement of myelination respectively while addition of MMP-28 to DRG co-cultures resulted in enhanced MAPK, ErbB2 and ErbB3 phosphorylation. MMP-28 protein expression was increased within demyelinated lesions of mouse experimental autoimmune encephalitis (EAE) and human multiple sclerosis lesions compared to surrounding normal tissue.</p> <p>Conclusion</p> <p>MMP-28 is upregulated in conditions of demyelination in vivo, induces signaling in vitro consistent with myelination inhibition and, neutralization of MMP-28 activity can enhance myelination in vitro. These results suggest inhibition of MMP-28 may be beneficial under conditions of dysmyelination.</p
    • …
    corecore