2 research outputs found

    The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences

    No full text
    Brinkrolf K, Ploeger S, Solle S, et al. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. MICROBIOLOGY. 2008;154(4):1068-1081.The Cg1547 protein of Corynebacterium glutamicum ATCC 13032 is a member of the LacI/GalR family of DNA-binding transcriptional regulators. A defined deletion in the cg1547 gene, now designated uriR (uridine utilization regulator), resulted in the mutant strain C. glutamicum KB1547. Comparison of gene expression levels in C. glutamicum KB1547 and the wild-type strain revealed enhanced expression of the uriR operon genes cg1546 (ribokinase), cg1545 (uridine transporter) and cg1543 (uridine-pref erring nucleoside hydrolase). Gene expression of the uriR operon was stimulated by the presence of either uridine or ribose. Growth assays with C. glutamicum mutants showed that functional Cg 1543 and Cg 1545 proteins are essential for the utilization of uridine as the sole carbon source. Transcriptional regulation of the uriR operon is mediated by a 29 bp palindromic sequence composed of two catabolite-responsive element (cre)-like sequences and located in between the mapped -10 promoter region and the start codon of uriR. A similar cre sequence was detected in the upstream region of rbsK2 (cg2554), coding for a second ribokinase in C. glutamicum ATCC 13032. DNA band-shift assays with a streptavidin-tagged UriR protein and labelled oligonucleotides including the cre-like sequences of uriR and rbsK2 demonstrated the specific binding of the purified regulator in vitro. Whole-genome DNA microarray hybridizations comparing the gene expression in C. glutamicum KB1547 with that of the wild-type strain revealed that UriR is a pathway-specific repressor of genes involved in uridine utilization in C. glutamicum

    Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032

    No full text
    Nentwich SS, Brinkrolf K, Gaigalat L, et al. Characterization of the Lacl-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. MICROBIOLOGY. 2009;155(1):150-164.The gene products of the rbsRACBD(rbs) operon of C. glutamicum (cg1410-cg1414) encode a ribose-specific ATP-binding cassette (ABC) transport system and its corresponding regulatory protein (RbsR). Deletion of the structural genes rbsACBD prohibited ribose uptake. Deletion of the regulatory gene rbsR resulted in an increased mRNA level of the whole operon. Analysis of the promoter region of the rbs operon by electrophoretic mobility shift assays identified a catabolite-responsive element (cre)-like sequence as the RbsR-binding site. Additional RbsR-binding sites were identified in front of the recently characterized uriR operon (uriR-rbsK1-uriT-uriH) and the ribokinase gene rbsK2, In vitro, the repressor RbsR bound to its targets in the absence of an effector. A probable negative effector of RbsR in vivo is ribose 5-phosphate or a derivative thereof, since in a ribokinase (rbsK1 rbsK2) double mutant, no derepression of the rbs operon in the presence of ribose was observed. Analysis of the ribose stimulon in the C. glutamicum wildtype revealed transcriptional induction of the uriR and rbs operons as well as of the rbsK2 gene. The inconsistency between the existence of functional RbsR-binding sites upstream of the ribokinase genes, their transcriptional induction during growth on ribose, and the missing induction in the rbsR mutant suggested the involvement of a second transcriptional regulator. Simultaneous deletion of the regulatory genes rbsR and uriR finally demonstrated a transcriptional co-control of the rbs and uriR operons and the rbsK2 gene by both regulators, RbsR and UriR, which were furthermore shown to recognize the same cognate DNA sequences in the operators of their target genes
    corecore