1,746 research outputs found

    The N=8 Supergravity Hamiltonian as a Quadratic Form

    No full text
    We conjecture that the light-cone Hamiltonian of N=8 Supergravity can be expressed as a quadratic form. We explain why this rewriting is unique to maximally supersymmetric theories. The N=8 quartic interaction vertex is constructed and used to verify that this conjecture holds to second order in the coupling constant

    Haematology in mice after weekly blood sampling for 7 weeks

    Get PDF
    No abstract availabl

    Influence of mountain waves and NAT nucleation mechanisms on Polar Stratospheric Cloud formation at local and synoptic scales during the 1999?2000 Arctic winter

    No full text
    International audienceA scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2) has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999?2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999?2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios

    A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method:PM6-D3H+

    Get PDF
    We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction energy of PM6-D3H+ is very similar to PM6-DH2 and PM6-DH+, with RMSD and MAD values within 0.02 kcal/mol of one another. The main difference is that the geometry optimizations of 88 complexes result in 82, 6, 0, and 0 geometries with 0, 1, 2, and 3 or more imaginary frequencies using PM6-D3H+ implemented in GAMESS, while the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed, e.g., when computing vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible

    Accurate Dielectric Response of Solids: Combining the Bethe-Salpeter Equation with the Random Phase Approximation

    Full text link
    The Bethe-Salpeter equation (BSE) can provide an accurate description of low-energy optical spectra of insulating crystals - even when excitonic effects are important. However, due to high computational costs it is only possible to include a few bands in the BSE Hamiltonian. As a consequence, the dielectric screening given by the real part of the dielectric function can be significantly underestimated by the BSE. Here we show that universally accurate optical response functions can be obtained by combining a four-point BSE-like equation for the irreducible polarisability with a two-point Dyson equation which includes the higher-lying transitions within the random phase approximation (RPA). The new method is referred to as BSE+. It has a computational cost comparable to the BSE but a much faster convergence with respect to the size of the electron-hole basis. We use the method to calculate refractive indices and electron energy loss spectra for a test set of semiconductors and insulators. In all cases the BSE+ yields excellent agreement with experimental data across a wide frequency range and outperforms both BSE and RPA.Comment: 6 pages, 4 figure

    Permafrost degradation risk zone assessment using simulation models

    Get PDF
    In this proof-of-concept study we focus on linking large scale climate and permafrost simulations to small scale engineering projects by bridging the gap between climate and permafrost sciences on the one hand and on the other technical recommendation for adaptation of planned infrastructures to climate change in a region generally underlain by permafrost. We present the current and future state of permafrost in Greenland as modelled numerically with the GIPL model driven by HIRHAM climate projections up to 2080. We develop a concept called Permafrost Thaw Potential (PTP), defined as the potential active layer increase due to climate warming and surface alterations. PTP is then used in a simple risk assessment procedure useful for engineering applications. The modelling shows that climate warming will result in continuing wide-spread permafrost warming and degradation in Greenland, in agreement with present observations. We provide examples of application of the risk zone assessment approach for the two towns of Sisimiut and Ilulissat, both classified with high PTP

    An Exact String Theory Model of Closed Time-Like Curves and Cosmological Singularities

    Full text link
    We study an exact model of string theory propagating in a space-time containing regions with closed time-like curves (CTCs) separated from a finite cosmological region bounded by a Big Bang and a Big Crunch. The model is an non-trivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of alpha' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by time-like curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in General Relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-Big-Bang cosmological scenarios.Comment: 37 pages, 4 figures. V2: discussion of computation of metric refined, references adde
    • ā€¦
    corecore