18 research outputs found

    Consensus summary report for CEPI/BC March 12–13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines

    Get PDF
    A novel coronavirus (CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan, China and has since spread as a global pandemic. Safe and effective vaccines are thus urgently needed to reduce the significant morbidity and mortality of Coronavirus Disease 2019 (COVID-19) disease and ease the major economic impact. There has been an unprecedented rapid response by vaccine developers with now over one hundred vaccine candidates in development and at least six having reached clinical trials. However, a major challenge during rapid development is to avoid safety issues both by thoughtful vaccine design and by thorough evaluation in a timely manner. A syndrome of “disease enhancement” has been reported in the past for a few viral vaccines where those immunized suffered increased severity or death when they later encountered the virus or were found to have an increased frequency of infection. Animal models allowed scientists to determine the underlying mechanism for the former in the case of Respiratory syncytial virus (RSV) vaccine and have been utilized to design and screen new RSV vaccine candidates. Because some Middle East respiratory syndrome (MERS) and SARS-CoV-1 vaccines have shown evidence of disease enhancement in some animal models, this is a particular concern for SARS-CoV-2 vaccines. To address this challenge, the Coalition for Epidemic Preparedness Innovations (CEPI) and the Brighton Collaboration (BC) Safety Platform for Emergency vACcines (SPEAC) convened a scientific working meeting on March 12 and 13, 2020 of experts in the field of vaccine immunology and coronaviruses to consider what vaccine designs could reduce safety concerns and how animal models and immunological assessments in early clinical trials can help to assess the risk. This report summarizes the evidence presented and provides considerations for safety assessment of COVID-19 vaccine candidates in accelerated vaccine development

    Sterile Debates and Dubious Generalisations: An Empirical Critique of European Integration Theory Based on the Integration Processes in Telecommunications and Electricity

    Full text link

    Cross-Reactive Polyclonal Antibodies to the Inner Core of Lipopolysaccharide from Neisseria meningitidis

    No full text
    Sera from mice immunized with native or detergent-extracted outer membrane vesicles derived from lipopolysaccharide (LPS) mutant 44/76(Mu-4) of Neisseria meningitidis were analyzed for antibodies to LPS. The carbohydrate portion of 44/76(Mu-4) LPS consists of the complete inner core, Glcβ1→4[GlcNAc α1→2Hep α1→3]Hep α1→5KDO[4→2αKDO]. Immunoblot analysis revealed that some sera contained antibodies to wild-type LPS which has a fully extended carbohydrate chain of immunotype L3,7, as well as to the homologous LPS. Sera reacted only weakly to LPS from 44/76(Mu-3), which lacks the terminal glucose of the inner core. No binding to more truncated LPS was observed. Consequently, the cross-reactive epitopes are expressed mainly by the complete inner core. Dephosphorylation of wild-type LPS abolished antibody binding to LPS in all but one serum. Thus, at least two specificities of cross-reactive antibodies exist: one is dependent on phosphoethanolamine groups in LPS, and one is not. Detection of these cross-reactive antibodies strongly supports the notion that epitopes expressed by meningococcal LPS inner core are also accessible to antibodies when the carbohydrate chain is fully extended. Also, these inner core epitopes are sufficiently immunogenic to induce antibody levels detectable in polyclonal antibody responses. Meningococci can escape being killed by antibodies to LPS that bind only to a specific LPS variant, by altering the carbohydrate chain length. Cross-reactive antibodies may prevent such escape. Therefore, inner core LPS structures may be important antigens in future vaccines against meningococcal disease

    Screening for Fabry disease and Hereditary ATTR amyloidosis in idiopathic small-fiber and mixed neuropathy

    No full text
    Abstract Introduction: In this study we assessed the value of genetic screening for Fabry disease (FD) and hereditary ATTR amyloidosis in patients with idiopathic small‐fiber neuropathy (SFN) or mixed neuropathy in a clinical setting. Methods: This was a Nordic multicenter study with 9 participating centers. Patients with idiopathic SFN or mixed neuropathy were included. Genetic sequencing of the TTR and GLA genes was performed. Results: There were 172 patients enrolled in the study. Genetic screening was performed in 155 patients. No pathogenic mutations in the TTR gene were found. A single patient had a possible pathogenic variant, R118C, in the GLA gene, but clinical investigation showed no firm signs of FD. Discussion: Screening for hereditary ATTR amyloidosis and FD in patients with idiopathic SFN or mixed neuropathy without any additional disease‐specific symptoms or clinical characteristics in a Nordic population appears to be of little value in a clinical setting
    corecore