8 research outputs found

    Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    No full text
    The IMS infrasound arrays have up to 15 sites with apertures up to 3 km. They are distributed remarkably uniformly over the globe, providing excellent coverage of South America, Africa, and Antarctica. Therefore, many infrasound arrays are in regions thousands of kilometers from the closest seismic array. Existing 3-component seismic stations, co-located with infrasound arrays, show how typical seismic signals look at these locations. We estimate a theoretical array response assuming a seismometer at each infrasound sensor, although the true performance would depend upon both SNR and coherence. These properties can however only be determined experimentally and borehole deployments may be needed to record seismic data of sufficient quality. We demonstrate, from a purely geometrical perspective, that essentially all IMS infrasound array configurations would provide seismic arrays with acceptable slowness resolution. Such arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would mitigate the development and operational costs due to shared infrastructure, and hosting countries might find such added capabilities valuable from a national perspective. The seismic data may allow far more information to be gleaned from the infrasound data. (Note that SRL papers at the time did not have abstracts. The above abstract was for a presentation with the same name held at the CTBTO Science and Technology Conference 2015.

    Cheaters

    No full text

    New Small Aperture Broadband Arrays in the European Arctic

    No full text
    As part of the EPOS-Norway infrastructure project, NORSAR received funding from the Research Council of Norway for a new regional seismic array on Bjørnøya (Bear Island) in the European Arctic. After along planning phase, a six-element broadband array was installed by NORSAR staff in August 2019 and has been providing data to NORSAR in near real-time since then. Due to several logistical and administrative constraints the 6-element array has an aperture of only 300 m. All sites are equipped with Kinemetrics MBB-2 sensors and Earth Data EDR-209 digitizers that are installed in near-surface vaults. Data are automatically copied to the Norwegian node of the European Integrated Data Archive (EIDA) and are openly available. Due to environmental restrictions less than the planned 9 array sites could be installed on Bjørnøya and the non-used instruments are now available to extend the broadband station Hornsund (HSPB), Southern Spitsbergen, to another small aperture broadband array, also with 6 sites. The array installation had to be postponed because of the ongoing pandemic and is now planned for the Arctic summer 2021.poste

    Improvements to Seismic Monitoring of the European Arctic Using Three-Component Array Processing at SPITS

    No full text
    The detectability of low magnitude seismic events in the European Arctic is determined primarily by the small-aperture International Monitoring System arrays ARCES and SPITS. In August 2004, the SPITS array was upgraded to a broadband array with an increase in the sampling rate from 40 to 80 Hz. Most important, however, for the detection and location of small-magnitude seismic events was the deployment of three-component instruments at six of the nine sites. Detection and correct classification of secondary phases are of paramount importance for events observed by only a small number of stations at regional distances; and, in the absence of the strong Lg phases typically observed for continental propagation paths, multiple three-component stations were deemed necessary to exploit the higher S-phase amplitudes anticipated on the horizontal sensors. We demonstrate improved signal-to-noise ratios (SNRs) for S phases on horizontal beams for several events close to Novaya Zemlya. Horizontal component f-k analysis improves direction estimates and phase classification for low-SNR signals. We demonstrate secondary phases that are misidentified by vertical-only f-k analysis but which are correctly classified by three-component array processing. A significant problem with array processing at SPITS is the overlap in slowness space of regional P and S phases. Phase identification is improved greatly by comparing the coherence between vertical traces with the coherence between horizontal traces. Considerations in the routine array processing of SPITS data are reviewed, including the need for elevation corrections in slowness estimation and the need to take into account azimuth-dependent variation of apparent velocity estimates for regional phases

    Seismic Network in Greenland Monitors Earth and Ice System

    No full text
    International audienceSome of the most dramatic effects of climate change have been observed in the Earth's polar regions. In Greenland, ice loss from the Greenland ice sheet has accelerated in recent years [Shepherd et al., 2012]. Outlet glaciers are changing their behavior rapidly, with many thinning, retreating, and accelerating [Joughin et al., 2004]. The loss of ice weighing on the crust and mantle below has allowed both to rebound, resulting in high rock uplift rates [Bevis et al., 2012]. Changes in ice cover and meltwater production influence sea level and climate feedbacks; they are expected to contribute to increasing vulnerability to geohazards such as landslides, flooding, and extreme weather
    corecore