51,455 research outputs found

    Hole-trapping by Ni, Kondo effect and electronic phase diagram in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4

    Full text link
    In order to investigate the electronic state in the normal state of high-Tc cuprates in a wide range of temperature and hole-concentration, specific-heat, electrical-resistivity, magnetization and muon-spin-relaxation (muSR) measurements have been performed in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4 where the superconductivity is suppressed through the partial substitution of Ni for Cu without disturbing the Cu-spin correlation in the CuO2 plane so much. In the underdoped regime, it has been found that there exist both weakly localized holes around Ni and itinerant holes at high temperatures. With decreasing temperature, all holes tend to be localized, followed by the occurrence of variable-range hopping conduction at low temperatures. Finally, in the ground state, it has been found that each Ni2+ ion traps a hole strongly and that a magnetically ordered state appears. In the overdoped regime, on the other hand, it has been found that a Kondo-like state is formed around each Ni2+ spin at low temperatures. In conclusion, the ground state of non-superconducting La2-xSrxCu1-yNiyO4 changes upon hole doping from a magnetically ordered state with the strong hole-trapping by Ni2+ to a metallic state with Kondo-like behavior due to Ni2+ spins, and the quantum phase transition is crossover-like due to the phase separation into short-range magnetically ordered and metallic regions.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Alfv\'en wave-driven wind from RGB and AGB stars

    Full text link
    We develop a magnetohydrodynamical model of Alfv\'en wave-driven wind in open magnetic flux tubes piercing the stellar surface of Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars, and investigate the physical properties of the winds. The model simulations are carried out along the evolutionary tracks of stars with initial mass in the range of 1.5 to 3.0 MM_{\odot} and initial metallicity ZiniZ_{\rm ini}=0.02. The surface magnetic field strength being set to be 1G, we find that the wind during the evolution of star can be classified into the following four types; the first is the wind with the velocity higher than 80 km s1^{-1} in the RGB and early AGB (E-AGB) phases; the second is the wind with outflow velocity less than 10 km s1^{-1} seen around the tip of RGB or in the E-AGB phase; the third is the unstable wind in the E-AGB and thermally pulsing AGB (TP-AGB) phases; the fourth is the stable massive and slow wind with the mass-loss rate higher than 107M^{-7} M_{\odot} yr1^{-1} and the outflow velocity lower than 20 km s1^{-1} in the TP-AGB phase. The mass-loss rates in the first and second types of wind are two or three orders of magnitude lower than the values evaluated by an empirical formula. The presence of massive and slow wind of the fourth type suggests the possibility that the massive outflow observed in TP-AGB stars could be attributed to the Alfv\'en wave-driven wind.Comment: 17 pages, 15 figures, accepted for publication in Ap

    Development of Cu-spin correlation in Bi_1.74_Pb_0.38_Sr_1.88_Cu_1-y_Zn_y_O_6+d_ high-temperature superconductors observed by muon spin relaxation

    Full text link
    A systematic muon-spin-relaxation study in Bi-2201 high-Tc cuprates has revealed for the first time that the Cu-spin correlation (CSC) is developed at low temperatures below 2 K in a wide range of hole concentration where superconductivity appears. The CSC tends to become weak gradually with increasing hole-concentration. Moreover, CSC has been enhanced through the 3% substitution of Zn for Cu. These results are quite similar to those observed in La-214 high-Tc cuprates. Accordingly, it has been suggested that the intimate relation between the so-called spin-charge stripe correlations and superconductivity is a universal feature in hole-doped high-Tc cuprates. Furthermore, apparent development of CSC, which is suppressed through the Zn substitution oppositely, has been observed in non-superconducting heavily overdoped samples, being argued in the context of a recently proposed ferromagnetic state in heavily overdoped cuprates.Comment: 6 pages, 5 figure

    Lattice monopole action in pure SU(3) QCD

    Get PDF
    We obtain an almost perfect monopole action numerically after abelian projection in pure SU(3) lattice QCD. Performing block-spin transformations on the dual lattice, the action fixed depends only on a physical scale b. Monopole condensation occurs for large b region. The numerical results show that two-point monopole interactions are dominant for large b. We next perform the block-spin transformation analytically in a simplified case of two-point monopole interactions with a Wilson loop on the fine lattice. The perfect operator evaluating the static quark potential on the coarse b-lattice are derived. The monopole partition function can be transformed into that of the string model. The static potential and the string tension are estimated in the string model framework. The rotational invariance of the static potential is recovered, but the string tension is a little larger than the physical one.Comment: 21pages,4figures,to be published in JHE

    Topological Charge of Lattice Abelian Gauge Theory

    Get PDF
    Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.Comment: 20 pages, latex, nofigur

    Observation of EAS using a large water tank

    Get PDF
    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984
    corecore