research

Development of Cu-spin correlation in Bi_1.74_Pb_0.38_Sr_1.88_Cu_1-y_Zn_y_O_6+d_ high-temperature superconductors observed by muon spin relaxation

Abstract

A systematic muon-spin-relaxation study in Bi-2201 high-Tc cuprates has revealed for the first time that the Cu-spin correlation (CSC) is developed at low temperatures below 2 K in a wide range of hole concentration where superconductivity appears. The CSC tends to become weak gradually with increasing hole-concentration. Moreover, CSC has been enhanced through the 3% substitution of Zn for Cu. These results are quite similar to those observed in La-214 high-Tc cuprates. Accordingly, it has been suggested that the intimate relation between the so-called spin-charge stripe correlations and superconductivity is a universal feature in hole-doped high-Tc cuprates. Furthermore, apparent development of CSC, which is suppressed through the Zn substitution oppositely, has been observed in non-superconducting heavily overdoped samples, being argued in the context of a recently proposed ferromagnetic state in heavily overdoped cuprates.Comment: 6 pages, 5 figure

    Similar works