294 research outputs found

    Increase of Pro-opiomelanocortin mRNA Prior to Tyrosinase, Tyrosinase-Related Protein 1, Dopachrome Tautomerase, Pmel-17/gp100, and P-Protein mRNA in Human Skin After Ultraviolet B Irradiation

    Get PDF
    In ultraviolet-induced tanning, the protein levels of various gene products critical for pigmentation (including tyrosinase and tyrosinase-related protein-1) are increased in response to ultraviolet B irradiation, but changes in mRNA levels of these factors have not been investigated in vivo. We have established an in situ hybridization technique to investigate mRNA levels of pro-opiomelanocortin, tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, Pmel-17/gp100, and microphthalmia-associated transcription factor, and have analyzed the changes in mRNA levels in the ultraviolet B-exposed skin in vivo. The right or left forearm of each volunteer was irradiated with ultraviolet B, and skin biopsies were obtained at 2 and 5 d postirradiation. mRNA level of pro- opiomelanocortin was increased 2 d after ultraviolet B irradiation, and returned to a near-basal level after 5 d, whereas the mRNA levels of tyrosinase, tyrosinase-related protein-1, dopachrome tautomerase, P-protein, and Pmel-17/gp100 showed some or no increase at 2 d, but were significantly increased 5 d after ultraviolet B irradiation. Microphthalmia-associated transcription factor mRNA was slightly increased on days 2 and 5 after ultraviolet B irradiation. Our results suggest that the mechanism of the tanning response of human skin may involve the transcriptional regulation of certain pigmentary genes, and that pro-opiomelanocortin-derived melanocortins such as α-melanocyte-stimulating hormone and adrenocorticotropic hormone may play a part in regulating these genes in vivo

    Inhibition of NF-κB and Akt pathways by an antibody-avidin fusion protein sensitizes malignant B-cells to cisplatin-induced apoptosis

    Get PDF
    Multiple myeloma (MM) is an incurable disease of malignant plasma cells. Recent therapeutic advancements have resulted in improved response rates, however, there is no improvement in overall survival, therefore, new therapeutics are needed. Since the transferrin receptor is upregulated on the surface of MM cells, we previously developed an antibody fusion protein consisting of an IgG3 specific for the human transferrin receptor 1 (TfR1, CD71) genetically fused to avidin at its carboxy-terminus (ch128.1Av). We have previously shown that ch128.1Av exhibits intrinsic cytotoxicity against certain malignant B-cells by disrupting the cycling of the TfR and decreasing TfR cell surface expression resulting in lethal iron starvation. In addition, ch128.1Av can sensitize malignant cells to apoptosis induced by gambogic acid, a herbal drug used in Chinese medicine. In this study, we hypothesized that ch128.1Av may also sensitize drug-resistant malignant B-cells to chemotherapeutic agents by inhibiting key survival pathways. In this study we show that ch128.1Av sensitizes malignant B-cells to apoptosis induced by cisplatin (CDDP). The sensitization by ch128.1Av resulted in the inhibition of the constitutively activated Akt and NF-κB survival/antiapoptotic pathways and downstream decreased expression of antiapoptotic gene products such as BclxL and survivin. The direct role of the inhibition of the Akt and NF-κB pathways by ch128.1Av in CDDP-mediated cytotoxicity was demonstrated by the use of specific chemical inhibitors and siRNA which mimicked the effects of ch128.1Av. Overall, this study provides evidence of the therapeutic potential of ch128.1Av as a chemo-sensitizing agent in drug-resistant tumor cells.Fil: Suzuki, Eriko. Keio University; JapónFil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Penichet, Manuel L.. University of California at Los Angeles; Estados UnidosFil: Umezawa, Kazuo. Keio University; JapónFil: Bonavida, Benjamín. University of California at Los Angeles; Estados Unido

    Impact of renal dysfunction on the choice of diagnostic imaging, treatment strategy, and outcomes in patients with stable angina

    Get PDF
    We investigated the interaction between the prognostic impact of a decrease in eGFR and the choice of initial diagnostic imaging modality for coronary artery disease. Out of 2878 patients who enrolled in the J-COMPASS study, 2780 patients underwent single photon emission computed tomography (SPECT), coronary computed tomography (CT) angiography, or coronary angiography (CAG) as an initial diagnostic test. After excluding patients with routine hemodialysis or lacked serum creatinine levels, 2096 patients in the non-decreased eGFR group (eGFR ≥ 60 ml/min/1.73 m²) and 557 patients in the decreased eGFR group (eGFR < 60 ml/min/1.73 m²) were analyzed in this study. Major adverse cardiac events, including death, myocardial infarction, heart failure hospitalization, and late revascularization, were followed, with a median follow-up duration of 472 days. SPECT or CAG was preferable to CT in patients in the decreased eGFR group (p < 0.0001 and p = 0.0024, respectively). There was a marginally significant interaction between the prognostic impact of a decrease in eGFR and the choice of diagnostic imaging modality (interaction-p = 0.056). A decrease in eGFR was not associated with a poor outcome in patients who underwent CT, while a decrease in eGFR was associated with poor outcomes in patients who underwent SPECT or CAG. In conclusion, the prognostic impact of a decrease in eGFR tended to be different among the initial imaging modalities

    Association of coronary revascularisation after physician-referred non-invasive diagnostic imaging tests with outcomes in patients with suspected coronary artery disease: a post hoc subgroup analysis

    Get PDF
    Objective: We aimed to evaluate the association of the prognostic impact of coronary revascularisation with physician-referred non-invasive diagnostic imaging tests (single photon emission CT (SPECT) vs coronary CT angiography) for coronary artery disease. Design: A post hoc analysis of a subgroup from the patient cohort recruited for the Japanese Coronary-Angiography or Myocardial Imaging for Angina Pectoris Study. Setting: Multiple centres in Japan. Participants: From the data of 2780 patients with stable angina, enrolled prospectively between January 2006 and March 2008 in Japan, who had undergone physician-referred non-invasive imaging tests, 1205 patients with SPECT as an initial strategy and 625 with CT as an initial strategy were analysed. We assessed the effect of revascularisation (within 90 days) in each diagnostic imaging stratum and the interaction between the two strata. Primary and secondary outcome measures: Major adverse cardiac events (MACEs), including death, myocardial infarction, hospitalisation for heart failure and late revascularisation, were followed up for 1 year. The χ2 test, Student’s t-test, Kaplan-Meier analysis, log-rank test and multivariable Cox proportional hazard model were used in data analysis. Results: A total of 210 (17.4%) patients in the SPECT stratum and 149 (23.8%) in the CT stratum underwent revascularisation. Although in each stratum, the cumulative 1 year incidence of MACEs was significantly higher in patients who underwent revascularisation than in those who did not (SPECT stratum: 9.1 vs 1.2%, log-rank p<0.0001; CT stratum: 6.1 vs 0.8%, log-rank p=0.0001), there was no interaction between the risk of revascularisation and the imaging strata (SPECT stratum: adjusted HR (95% CI), 4.25 (1.86–9.72); CT stratum: 4.13 (1.16–14.73); interaction: p=0.97). Conclusion: The association of revascularisation with the outcomes of patients with suspected coronary artery disease was not different between SPECT-first and CT-first strategies in a physician-referred fashion

    Jiadifenolide induces the expression of cellular communication network factor (CCN) genes, and CCN2 exhibits neurotrophic activity in neuronal precursor cells derived from human induced pluripotent stem cells

    Get PDF
    Jiadifenolide has been reported to have neurotrophin-like activity in primary rat cortical neurons, and also possesses neurotrophic effects in neuronal precursor cells derived from human induced pluripotent stem cells (hiPSCs), as we have previously reported. However, the molecular mechanisms by which jiadifenolide exerts its neurotrophic effects in rat and human neurons are unknown. Thus, we aimed to investigate the molecular mechanisms and pathways by which jiadifenolide promotes neurotrophic effects. Here, we found that jiadifenolide activated cellular communication network factor (CCN) signaling pathways by up-regulating mRNA level expression of CCN genes in human neuronal cells. We also found that CCN2 (also known as connective tissue growth factor, CTGF) protein promotes neurotrophic effects through activation of the p44/42 mitogen-activated protein kinase signaling pathway. This is the first discovery which links neurotrophic activity with CCN signaling

    Transcriptional repression by MYB3R proteins regulates plant organ growth

    Get PDF
    In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size
    corecore