113 research outputs found

    Improving ART Pregnancy Rate with Two Kinds of Media and Two Types of Incubators

    Get PDF
    Culture media and incubators have played a key role in embryo quality. Here, we observed individual patient’s embryos to have different response for media and incubators. Patient’s 1850 zygotes were divided into two groups randomly and were cultured in Global and in P1 medium. The cleavage rate and embryo quality were recorded. The result showed that the cleavage, top quality embryos on Day 2 and Day 3 were not statistically different between media. However, 45% patient’s embryos grew very well in both Global and P1. 22% patient’s embryos grew well only in Global but poor quality in P1, while 21% grew well in the Global but poorly in the P1. Only 12% patient embryos did not grow well in both. The pregnant rate was only 40% in P1 or 42.5% in Global (P>0.05). However, when two media were used simultaneously, the pregnant rate increased to 70.1%. Also, two incubators showed significant higher pregnant rate than in single incubator (73.2% vs. 60%, P<0.05). In conclusion, the favorable response of individual patient’s embryos to media and incubators suggests that using two media and two incubators for embryo culture could significantly improve embryo quality and pregnant rates

    JOR: A Journal-guided Reconstruction Optimization for RAID-Structured Storage Systems

    Get PDF
    This paper proposes a simple and practical RAID reconstruction optimization scheme, called JOurnal-guided Reconstruction (JOR). JOR exploits the fact that significant portions of data blocks in typical disk arrays are unused. JOR monitors the storage space utilization status at the block level to guide the reconstruction process so that only failed data on the used stripes is recovered to the spare disk. In JOR, data consistency is ensured by the requirement that all blocks in a disk array be initialized to zero (written with value zero) during synchronization while all blocks in the spare disk also be initialized to zero in the background. JOR can be easily incorporated into any existing reconstruction approach to optimize it, because the former is independent of and orthogonal to the latter. Experimental results obtained from our JOR prototype implementation demonstrate that JOR reduces reconstruction times of two state-of-the-art reconstruction schemes by an amount that is approximately proportional to the percentage of unused storage space while ensuring data consistency

    Effect of Assisted Reproductive Technology (ART) on Babies Born: Compared by IVF Laboratories of Two Countries

    Get PDF
    Assisted reproductive technology (ART) has been widely used for infertility treatment, but many people have concern about their baby’s health. The objective of this chapter is to provide some detailed data about the effect of ART on human birth babies by analyzing the data from in vitro fertilization (IVF) centers in two countries. All recent records related to a baby’s birth including mother’s age, gestational days, baby’s sex, and birth weight data were collected and analyzed according to fresh or frozen embryo transfer procedure. Normal delivery data without ART were used as control. The result showed that ART patient age is significantly older than non-IVF women; the gestation of fresh and frozen embryo transfer is the same as normal spontaneous conception gestation days, but women pregnant with multiple gestations have shorter gestational period and early birth rate as well as low birth weight; and there is no significant difference in the baby’s weight between ART singleton babies and normal conception babies, but male babies weight is more than female babies, and multiple gestation’s birth weights are significantly lower than singletons, while frozen embryo transfer babies have significantly heavier birth weight than fresh embryo transfer. Also, the frozen embryo transfer technique may significantly decrease premature birth rate. Thus, frozen embryo transfer may be recommended as a health strategy in ART

    Effects of surface preparation on tribological behaviour of a ferritic stainless steel in hot rolling

    Get PDF
    Some defects on the surface of carbon steel do not need to be removed before hot rolling because the surface will be vigorously oxidised in a reheating environment. Thus the defects can be minimised by oxidising and then removed by the de-scaling process. The defects on the surface of ferritic stainless steels, however, are not easily removed by oxidation when a high chromium concentration is used. In this paper, a ferritic stainless steel grade 445 was selected as a research material. The effects of different surface features on oxidation and tribological behaviour in the hot rolling process were investigated. Three surface states were prepared, namely, smooth surface, surface with 45° grinding marks and surface with oscillation marks. The samples were put into an electric furnace at 1100 °C for reheating. Hot rolling tests were carried out on a 2-high Hille 100 experimental rolling mill. Rolling forces were measured, and the coefficient of friction was calculated and compared under various rolling parameters. It was found that the original surface profiles with grinding marks were still maintained during oxidation. The original oxide scale on the surface with oscillation marks caused the formation of irregular oxide nodules and the spallation of the oxide scale. Surface morphology and the reduction in thickness had a significant impact on the oxide scale integrity and coefficient of friction in the hot rolling process

    Genome-Wide Gene Expression Profiling of Nucleus Accumbens Neurons Projecting to Ventral Pallidum Using both Microarray and Transcriptome Sequencing

    Get PDF
    The cellular heterogeneity of brain poses a particularly thorny issue in genome-wide gene expression studies. Because laser capture microdissection (LCM) enables the precise extraction of a small area of tissue, we combined LCM with neuronal track tracing to collect nucleus accumbens shell neurons that project to ventral pallidum, which are of particular interest in the study of reward and addiction. Four independent biological samples of accumbens projection neurons were obtained. Approximately 500 pg of total RNA from each sample was then amplified linearly and subjected to Affymetrix microarray and Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD) transcriptome sequencing (RNA-seq). A total of 375 million 50-bp reads were obtained from RNA-seq. Approximately 57% of these reads were mapped to the rat reference genome (Baylor 3.4/rn4). Approximately 11,000 unique RefSeq genes and 100,000 unique exons were identified from each sample. Of the unmapped reads, the quality scores were 4.74 ± 0.42 lower than the mapped reads. When RNA-seq and microarray data from the same samples were compared, Pearson correlations were between 0.764 and 0.798. The variances in data obtained for the four samples by microarray and RNA-seq were similar for medium to high abundance genes, but less among low abundance genes detected by microarray. Analysis of 34 genes by real-time polymerase chain reaction showed higher correlation with RNA-seq (0.66) than with microarray (0.46). Further analysis showed 20–30 million 50-bp reads are sufficient to provide estimates of gene expression levels comparable to those produced by microarray. In summary, this study showed that picogram quantities of total RNA obtained by LCM of ∼700 individual neurons is sufficient to take advantage of the benefits provided by the transcriptome sequencing technology, such as low background noise, high dynamic range, and high precision

    A novel understanding of the normalized fatigue delamination model for composite multidirectional laminates

    Get PDF
    Normalized fatigue delamination models have been widely applied by researchers in the characterization of the fatigue delamination behavior of composite laminates. However, the inherent mechanism of this normalization method has not been explored. This study aims to present a physical understanding on the normalized fatigue delamination model from a viewpoint of energy. The fatigue delamination behavior is considered to be governed by the driving force and delamination resistance, and based on this principle the physical mechanism of the fatigue delamination is studied. A new physics-based normalized fatigue delamination model is proposed in this paper. In order to experimentally validate the proposed fatigue delamination model, mode I fatigue delamination tests are performed on double cantilever beam specimens to obtain the experimental data with different amounts of the fiber bridging. The results show that the normalized model is suitable to accurately characterize the fatigue delamination behavior of the composite laminates by using a single master curve. The master curve is finally employed as a standard approach to predict the fatigue results. Good agreement between the predicted and the experimental results is achieved, therefore it approves the applicability of the proposed fatigue delamination model in characterizing the fatigue delamination growth behavior

    Effects of Ethanol and NAP on Cerebellar Expression of the Neural Cell Adhesion Molecule L1

    Get PDF
    The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs), and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7) rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10−12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression
    • …
    corecore