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Abstract 

Some defects on the surface of carbon steel do not need to be removed before hot 

rolling because the surface will be vigorously oxidised in a reheating environment. 

Thus the defects can be minimised by oxidising and then removed by de-scaling 

process. The defects on the surface of ferritic stainless steels, however, are not easily 

removed by oxidation when a high chromium concentration is used. In this paper, a 

ferritic stainless steel grade 445 was selected as a research material. The effects of 

different surface features on oxidation and tribological behaviour in hot rolling 

process were investigated. Three surface states were prepared, namely, smooth 

surface, surface with 45 ° grinding marks and surface with oscillation marks. The 

samples were put into an electric furnace at 1100 °C for reheating. Hot rolling tests 

were carried out on a 2-high Hille 100 experimental rolling mill. Rolling forces were 

measured, and the coefficient of friction was calculated and compared under various 

rolling parameters. It was found that the original surface profiles with grinding marks 

were still maintained during oxidation. The original oxide scale on the surface with 

oscillation marks caused the formation of irregular oxide nodules and the spallation of 

the oxide scale. Surface morphology and the reduction in thickness had significant 

impact on the oxide scale integrity and coefficient of friction in hot rolling process. 
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1. Introduction  

Surface defects on carbon steel can be minimised by oxidising and then removed by 

de-scaling process, thus the surface defects on carbon steel do not need to be removed 

previously before the slabs are placed into reheating furnace because their surfaces 

will be vigorously oxidised in a reheating environment [1]. Stainless steels are iron-

based alloys that contain a minimum of about 12% Cr. The defects on the surface of 

some stainless steels, however, are not easily removed by oxidation [2] especially 

when a high Cr concentration is used. Cr is the main element used in order to induce 

corrosion resistance in stainless steels. Generally, the higher the Cr concentration, the 

higher the oxidation resistance is [3-5]. Ferritic stainless steels, containing little or no 

nickel, although their corrosion resistance is inferior to austenitic stainless steels [6], 

are widely used because they are cheap [7, 8]. The lower thermal expansion 

coefficient of the ferritic stainless steel makes them excellent for high-temperature 

applications with thermal cycles, provided their strength is adequate [2]. Thus more 

ferritic stainless steel products with a high Cr content are developed and produced.  It 

has been noted that, as the chromium exceeds 20 w.t%, the stainless steels have high 

oxidation resistance [9, 10], e.g. ferritic stainless steel grades 443 and 445. A defect 

mark from a slab-heating furnace on such stainless steels will remain through the hot 

rolling, annealing, and cold rolling process [2]. Thus, a slab grinder will mechanically 

remove the surface defects on the ferritic stainless steel slab before the steel slab is 

put into the reheating furnace. The grinding marks caused by a slab grinder will 

appear on the surface of the slab where there were surface defects, such as small 

holes, and cracks. Oscillation marks are ripples formed on the surface of continuously 

cast material. They may cause cracking and decrease the yield of the process since 

some defects must be ground away to avoid crack growth.  
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The oxide scale on stainless steels exhibits complicated characteristics because the 

oxidation is significantly affected by the alloying elements and the atmosphere [8]. 

The two major phases of a stainless steel oxide scale are the M2O3 rhombohedral 

phase (e.g. Cr2O3 and Fe2O3) and the M3O4 spinel phase (e.g. FexCr3-xO4 and 

Mn1.5Cr1.5O4) [10-13]. Usually, the lower thermal expansion coefficient of ferritic 

stainless steels makes their oxide scale more compatible with the base substrate and 

provides them with lesser tendency to spall [3]. It is found that the oxide scale 

deformation behaviour on carbon steels strongly depends on the rolling temperature 

and the oxide scale thickness [14]. The oxide scale thickness on carbon steels appears 

to be more important than the oxide scale composition on friction, and thicker scales 

give lower friction values [15]. Little is known about effects of the surface preparation 

on oxidation and deformation behaviour of the stainless steels in hot rolling. The 

objective of this study is to investigate the surface preparation of the ferritic stainless 

steel 445, i.e. oxide scale thickness, the surface with or without grinding and 

oscillation marks on the oxidation behaviour at high temperature and the surface 

transformation after hot rolling at various reductions in thickness. The morphology of 

the oxide scale of the strip before and after rolling was analysed. Deformation 

behaviour of the oxide scale and its effects on friction were also examined and 

discussed. 



4 

 

2. Experimental details 

2.1. Material  

A ferritic stainless steel grade 445 was selected in this investigation and its chemical 

composition is shown in Table 1. All the samples used in the experiment were 

adopted from hot rolled strips.  

 

Table 1 Chemical composition (wt.%) of the ferritic stainless steel grade 445 

C Si Mn P Cr Cu Mo Ti Nb Fe 

≤0.01 0.30 ≥0.15 0.03 21.50 0.10 0.60 ≤0.20 0.12 Bal. 

 

2.2. Oxidation and hot rolling test  

The material used was cut from the slab and the specimens without marks were 

machined to the size of 300(L) × 100(W) ×10(H) mm
3
.  The specimens with grinding 

or oscillation marks were machined to the size of 100(L) × 125(W) ×10(H) mm
3
. In 

order to assist the sample to be bitten into the roll gap, the front of the specimen was 

tapered to a thickness of 1 mm. The surfaces without marks of the specimens were 

ground and the measured surface roughness Ra was 0.25 µm. Small samples of 10(W) 

×10(L) ×10(H) mm
3
 were cut from the material with different surface preparation for 

the oxidation test. Reheating was carried out in a high temperature electric resistance 

furnace with a chamber size of 350(W) ×330(H) ×870 (D) mm
3
. In general, the water 

vapour contents between 7.0 and 19.5 vol. % in humid air are considered relevant to 

hot rolling [16]. Therefore, a water vapour generator was connected to the furnace and 

18% water vapour content was selected to flow into the furnace at 15 litres/min.  

 



5 

 

Hot rolling experiments were carried out on a 2-high Hille 100 experimental rolling 

mill with rolls of 225 mm diameter and 254 mm roll body length. Rolling forces were 

measured by load cells on the mill. Rolling speed can be set from 0.12 to 0.72 m/s.  

The roll speed in the real industry is far faster than that in the laboratory, e.g. the first 

pass roll speed is 2 m/s in Baosteel, so that the rolling speed was set to a maximum of 

0.72 m/s or 60 rpm. Reductions of 20, 30 and 40% were selected for the surfaces 

without marks. Reductions of 20 and 40% were selected for the surfaces with marks. 

The specimens without marks were thoroughly cleaned with acetone before reheating, 

but the specimens with marks were kept as they were. All the specimens were placed 

immediately in a cooling box with nitrogen gas after hot rolling or reheating to 

prevent further oxidation. 

 

2.3. Observation and analysis 

The surface of the samples was covered with a mixture of epoxy resin and hardener to 

protect the oxide scale after oxidation. After 24 h the resin coagulated, and then the 

protected oxide scale part was sectioned along the rolling direction by a Stuers 

Accutom50 Cutting Machine to obtain the cross-section of the oxide scale. Finally, 

the oxide scale sample was cold mounted, ground and polished. To analyse the scale 

cross-section, all oxidised samples were prepared using a technique reported by Chen 

and Yuen [17]  and Wei et al. [18, 19] to minimise preparation damage to the oxide 

scale.  

 

The microstructures, composition and thickness of the oxide scale were examined by 

a JEOL JSM 6490 scanning electron microscope (SEM) equipped with an Energy 

Dispersive Spectrometer (EDS) and backscatter electron imaging (BSE). The surface 
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profiles were examined using a VHX-1000 digital microscope with 2D/3D imaging 

and measurement capability. X-ray diffraction was used for the phase identification of 

the oxide scale.  

3.  Results and discussion 

3.1 The oxide scale with different thickness on the stainless steel 445 and its 

deformation behaviour in hot rolling  

In our previous studies, the oxidation kinetics of the steel 445 was investigated by a 

thermogravimetric analyser (TGA) at the temperatures of 1000, 1030, 1060, 1090, 

1120 and 1150 °C [10]. Before hot rolling the samples were placed in the electric 

resistance furnace for reheating. We used the maximum operating temperature of this 

furnace, which is 1100 °C. It is known that Cr2O3 would be the main composition of 

the oxide scale formed at such a temperature. We need to present the cross-sections of 

the oxide scale formed at different oxidation times because later we adopt different 

oxide scale thickness on the steel for the hot rolling process.  

 

Fig. 1a-d shows the cross section of the oxide scale when the stainless steel 445 was 

oxidised at 1100 °C from 30 to 120 min at an interval of 30 min in humid air. Only 

one layer of oxide scale was formed during 120 min. The thickness of oxide scale was 

2.8±0.15 µm when the sample was oxidised for 30 min, then steadily grew to 

4.1±0.20 µm for 60 min, over time it reached 6.0±0.26 µm for 120 min and the 

surfaces became gradually even. The surface morphology of the steel 445 after being 

oxidised in humid air for 120 min is shown in Fig. 1e. No spallation was observed 

when the specimen was cooled down to ambient temperature. The cross section of the 

oxide scale shows that the oxide scale adheres to the steel substrate and it is compact 
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without obvious pores in the oxides. The method of characterising the oxide scale can 

be found in our previous study [10]. The black spots at the steel/oxide are 

discontinuous Si-rich oxides. Cheng et al. [9] found that this characterisation of Si 

only existed when there was no Cr depletion in the steel. The oxide spinels were 

formed on top of the surface with different sizes as shown in Fig. 1f. The oxide scale 

is mainly made of Cr2O3, as shown by its EDS line analysis in Fig. 1. Cr2O3 has a 

corundum structure, which consists of an hcp array of oxygen with two-thirds of the 

octahedral sites occupied by the metal [26-28]. EDS spot analysis shows that M in 

spinel M3O4 is comprised of Cr, Mn and small amount of Fe. The mean grain size of 

the spinels is about 2 µm and the spinels are incorporated into the fine Cr2O3 scale. 

The formation of compact and continuous Mn-Cr spinel on top of the Cr2O3 scale on 

Mo alloying 445 steel greatly reduce the evaporation of chromium species [9], and 

this causes high oxidation resistance of this stainless steel. The structures and 

compositions of the oxide scales are similar to that oxidised at 1090 and 1120 °C for 

120 min [10], but the thickness is different. The oxidation behaviour is different from 

carbon steels on which the oxide scale is porous and thick with three oxide layers 

[20]. When the oxide scale is formed on carbon steel at high temperature, the relative 

thickness of FeO: Fe3O4: Fe2O3 are in the ratio of roughly 95:4:1 at 1000 °C [4]. 

Occurrence of FeO phase accelerates oxidation because this oxide scale contains an 

excessive number of cation vacancies and a large composition range, which are 

conducive to rapid diffusion of iron ions across the oxide scale. Therefore, the oxide 

thickens rapidly at the expense of the metallic phase [21]. However, there was no FeO 

phase formed on this stainless steel. The density of the oxide scale is a physical 

property that can demonstrate the voids or pores in the oxide scale. With the same 

composition, the lower the density the higher the pores in the oxide scale. This 
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physical property of the oxide scale has effects on its deformation behaviour during 

hot rolling [22]. The density of the oxide scale can be determined by the oxidation 

data in our previous study [10] and the thickness of the oxide scale in this study.  

 

 

Fig. 1 The microstructures of the oxide scale on the stainless steel 445 oxidised from 

30 to 120 min in humid air before hot rolling. (a) Cross section of the oxide scale 

oxidised for 30 min, (b) oxidised for 60 min, (c) oxidised for 90 min, (d) oxidised for 

120 min and the result of EDS line scan on the right;, (e) oxidised sample surface, and 

(f) SEM surface morphology  

 

According to the oxidation study of the stainless steel 445 [10],  the oxidation kinetic 

curves (mass change versus time) of the stainless steel 445 presenting a parabolic law 
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from 1030 to 1120 °C is shown in Fig. 2a. Compliance to the parabolic law indicates 

that the diffusion of the ions through the oxidised layer was the rate-determining step 

according to Wagner’s theory [3]. No breakaway oxidation occurred at 1100 °C, 

indicating no iron-rich oxide formed on the stainless steel 445. The high temperature 

oxidation kinetics of metals or alloys is commonly controlled by the diffusion of 

cationic or anionic species through the oxide scale [23]. This control leads to a 

parabolic rate constant, kp, expressed in mg
2
 /cm

4
 /s, and defined by (∆m/A)

2
 = kpt 

[23], where ∆m/A is the specific weight gain per area unit [mg/ cm
2
], t is the 

oxidation time (s). The Arrhenius equation can be given in the form: 

 

kp=k0 e
(-EA/RT)

                                                                 (1) 

 

where k0 is the pre-exponential factor of the reaction (mg
2
 /cm

4
 /s ), R is the universal 

gas constant (8.314×10
-3 

kJ/mol/K), T is the temperature in kevin (K) and EA is the 

activation energy( kJ /mol). The activation energy obtained from the Arrhenius plot as 

shown in Fig. 2b is 263 kJ/mol for the formation of the Cr2O3 scale in humid air [10]. 

Then the value of K0=6.82×10
6
 mg

2
 /cm

4
 /s. Therefore, the kinetic equation can be 

defined as follows: 

 

       (∆m/A)
2
 = 6.82×10

6
 e

(-263/RT)
 t     (2) 

 

The parabolic curves from Eq. (2) are plotted in Fig. 2a with solid lines to compare to 

the experimental results. It can be seen that the curves from Eq. (2) fit the 

experimental curves. The parabolic curves of the Cr2O3 scale growth on the stainless 

steel 445 at 1000 and 1100 °C were also plotted according to Eq. (2). Table 2 shows 
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the derived data of the mass gain (∆m/A) from Eq. (2) when the steel is oxidised at 

1100 °C from 30 to 120 min in humid air. With the corresponding thickness at each 

oxidation time, the density of the Cr2O3 scale formed on the steel 445 can be 

calculated (∆m/A/ξ.). It can be seen from Table 2, that the density of the Cr2O3 scale 

has not changed much over time. This density is less than that of the bulk Cr2O3, 5.22 

g/cm
3
. The impurity and voids by cation diffusion in the oxide scale affect this 

property greatly.  

 

Fig. 2 (a) Mass change versus time curves for the stainless steel 445oxidised for 120 

min at different temperatures in humid air [10] and the parabolic curves from the 

Eq.(2) and (b) Arrhenius plot of oxidation parabolic constants at 1030, 1060, 1090 

and 1120 °C for the stainless steel 445 [10]. 

 

Table 2 The oxide scale properties formed at different oxidation times at 1100 °C in 

humid air 

Oxidation time(min) ∆m/A(mg/cm
2
) Thickness ξ (µm) Density (g/cm

3
) 

30 1.20 2.8±0.15 4.3 

60 1.69 4.1±0.20 4.1 

90 2.07 5.1±0.12 4.1 

120 2.39 6.0±0.26 4.0 

 

Fig. 3 shows the surface morphology of the steel 445 at different reductions in 

thickness after hot rolling at 1050 °C. The rolling specimens were reheated in an 

electric furnace at 1100 °C for 120 min in humid air. Fig. 3a shows no cracks on the 
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surface when the specimen was rolled at the reduction of 19.8%. The surface was 

covered with fragmented particles. Fig. 3b shows small transverse cracks on the 

surface but in general, the oxide scale remains integral at the reduction of 29.9%. Fig. 

3c shows some big cracks and the cracks are in different directions at the reduction of 

39.8%.   

 

Fig. 3 The surface micrographics of the rolled specimens oxidised for 120 min with a 

oxide scale thickness of 6.0 ±0.26 µm under different reductions: (a) 19.8%, (b) 

29.9%, and (c) 39.8% (Arrows indicate rolling direction (RD)) 

 

After hot rolling, the oxide scale on the rolled specimens was not spalled off and 

adhered to the steel substrate. Fig. 4 shows back-scattered electrons (BSE) images of 

the cross sections of the rolled specimens at different reductions and the 

corresponding 3-D surface profiles for the rolled specimens. The surface roughness 

was conformal to its morphology observed by SEM and 3-D surface profiles. The 

surface roughness Ra is in the order: 39.8% >19.8% >29.9%. According to the 

investigation of the Cr2O3 scale on the ferritic stainless steel by Cheng et al. [24], the 

Cr2O3 scale is more brittle than the steel substrate and the ductility could be improved 
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with increasing the temperature. Fig. 4a-c shows that, as the reduction in thickness 

increases from 19.8 to 39.8%, the thickness of the deformed oxide scales decreases. 

The deformation behaviour of the oxide scale on carbon steel can be characterised as 

brittle, mixed, or ductile, based on its integrity between 650 and 1050 °C in hot 

rolling [25]. The oxide scale shows various deformation behaviours [26-29]. 

Utsunomiya et al. [28] classified them into some categories: (a) uniform deformation 

with matrix steel, (b) cracking, (c) fragmentation, and (d) indentation to matrix steel, 

etc. The deformation behaviour of the oxide scale strongly depends on the rolling 

temperature and the oxide scale thickness [14, 30]. In our study, it can be seen from 

Fig. 4-c, the steel/oxide interface is not even at different reductions. At 1050 °C, hard 

brittle oxide was fragmented and indented to the steel substrate so that the interface 

was rough and this became severe when the reduction is high. As shown in Fig. 4c, 

when the reduction is 39.8%, the steel substrate is extruded from the through 

thickness cracks in the oxide scale to the outmost surface.  

 

Fig. 4 The cross sections of rolled stainless steel with a thickness of 6.0±0.26 µm 

under different reductions and corresponding 3-D surface profiles: (a)(d) 19.8%, 

(b)(e) 29.9%, and (c)(f) 39.8%. 
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The variation of the roll separating forces through the roll gap at reductions varying 

from 19.8 to 39.8% is shown in Fig. 5. The thickness of the oxide scale differed by 

the oxidation time (Table 2). The thickness of the Cr2O3 scale has not varied much 

between 60 (4.1±0.20 µm) and 120 min (6.0±0.26 µm) and the main constitute and its 

density have not changed over time. The roll separating forces were slightly higher 

when there was a thin oxide scale on the steel, at reductions ranging from 19.8 to 

30.2%. However, the rolling force differences were negligible with an increase of 

oxide scale thickness at the reduction of approx. 40%. At such a high reduction, 

wherever the oxide scale thickness was thin or thick, the deformation behaviour of the 

Cr2O3 scale was similar. The Cr-rich oxide scale on the steel rolled at different 

temperatures showed that its deformation behaviour changed greatly when the rolling 

temperature changed [24]. The oxide scale is thinner, harder and more brittle at or 

below 1000 °C than that at 1050 °C. This study shows that a slightly thicker Cr-rich 

oxide scale with similar density on the steel has little effect on the rolling force at a 

very high reduction.  
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Fig. 5 The rolling forces as a function of time at different reductions when the 

thickness of the oxide scale differs.  

 

3.2 Oxidation of the stainless steel 445 with grinding or oscillation marks at 1100 °C 

and the deformation behaviour in hot rolling  

Fig. 6 shows the surface profiles of the samples with 45° grinding and oscillation 

marks. A slab grinder in Baosteel did the work for preparing grinding marks. Fig. 6a 

shows that the grinding marks are regular and the depth between the peak and the 

valley is about 70 µm. Fig. 6b shows the surface profile of the sample with oscillation 

marks where the surface is extremely rough and wavy, and the depth between the 

peaks and the valleys is not regular.  
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Fig. 6 3-D surface profiles of (a) the grinding and (b) oscillation marks on the 

stainless steel 445 

 

The small samples were cut from one of the rolling specimens with grinding or 

oscillation marks, which was oxidised at 1100 ºC for 120 min in humid air. 

 

Fig. 7 shows the surface and the cross section morphology of the oxidised sample 

with 45 ºC grinding marks. The grinding marks can still be seen on the oxidised 

sample, as shown in Fig. 7a. Although the oxide grew over the grinding marks, the 

original surface profile was still maintained. Fig. 7b and c shows some spinels 

embedded in the fine Cr2O3 oxide grains. The oxide composition has not changed by 

this surface preparation on the stainless steel 445. Fig. 7d shows the cross section of 

the oxidised sample. The thickness of the oxide scale on the surface with grinding 

mark was between 2 and 8 µm with an average of 6.1 µm, which is similar to that on 

the smooth surface.  
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Fig. 7 The surface and cross section morphology of the sample with grinding marks 

oxidised for 120 min in humid air. (a) oxidised surface, (b) SEM micrograph of the 

surface morphology, (c) surface morphology in high magnification, and (d) cross 

section of the oxide scale 

 

Fig. 8 shows the surface and the cross section morphology of the oxidised sample 

with oscillation marks. The oscillation marks can still be seen on the oxidised sample, 

as shown in Fig. 8a. The oxide scale appeared non-uniform. Some oxide flakes were 

spalled off and the steel substrate were exposed, as shown in Fig. 8c. In some regions, 

the oxide scale was thick which exhibited different structures from that on the smooth 

surface. Overall, the original surface profile did not change much on the surface with 

oscillation marks during oxidation. Fig. 8d shows the cross section of the oxidised 

sample. Besides the Cr2O3 scales, oxide nodules comprised of iron oxides with 

different sizes were formed.  
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Fig. 8 The surface and cross section morphology of the sample with oscillation marks 

oxidised for 120 min in humid air. (a) oxidised surface, (b) SEM micrograph of the 

surface morphology, (c) surface morphology in high magnification, and (d) cross 

section of the oxide scale 

 

Fig. 9 shows the surface morphology of the samples with grinding and oscillation 

marks at the reductions of 20 and 40% at 1050 ºC after hot rolling. Fig. 9a1 and b1 

show that the grinding and the oscillation marks are still observed when the reduction 

is 20%. The steel was elongated, and the colour of the surface was not uniform 

because of the non-uniform oxide scale on the surfaces before hot rolling. Fig. 9a2 

and b2 show that the surface become brighter as the specimen is further elongated 

when the reduction is 40%. The grinding and oscillation marks can hardly be seen at 

the high reduction. On the surface with originally oscillation marks, the colour 

appeared non-uniform, as shown in Fig. 9b2, indicating that there existed various 
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oxide thicknesses and the non-uniform distribution of the oxide scale on the rolled 

specimen surface. 

 

Fig. 9 The specimen with (a) grinding and (b) oscillation marks. (a-b) The specimens 

before rolling, (a1-b1) the specimens at the reduction of 20% after hot rolling, and  

(a2-b2) the specimens at the reduction of 40% after hot rolling. The specimens were 

reheated for 120 min. 

 

Fig. 10 shows the rolling forces as a function of time with different surface 

preparations at low or high reduction and the corresponding 3-D surface profiles of 

the rolled specimens. The variation of the rolling forces through the roll gap at the low 

reduction is not significant. However, the variation of the rolling forces is magnificent 

at the high reduction when the sample had different surface preparations before hot 

rolling. Compared to the smooth surface that was used as a comparison, the rolling 

force for the surface having grinding marks is almost 30% higher at both reductions, 

and that for the surface having oscillation marks is 200% higher at the reduction of 
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43.5%. The surface with oscillation marks required the largest rolling force and 

hence, created the largest resistance to the relative motion at this high reduction. Its 

uneven surface and irregular oxide scale before hot rolling may cause this 

phenomenon.  

 

Fig. 10 The rolling forces as a function of time: (a) low reduction of approx. 20%, (b) 

high reduction of approx. 40%, and 3-D surface profile of rolled sample: (c)(d) 

reductions of 19.2 and 39.7% for the specimen with grinding marks, and (e)(f) 

reductions of 17.5 and 43.5% for the specimen with oscillation marks. 

 

Fig. 11 shows the relationship between the coefficient of friction (COF) and the 

rolling reduction. The COF values were determined by inverse calculations [24]. The 

effect of the oxide scale thicknesses controlled by oxidation time on COF was 

compared. Thin oxide scale oxidised for 60 min was 4.1±0.2 µm while thick oxide 

oxidised for 120 min was 6.0±0.26 µm. When the reduction has not exceeded 30%, 

the thicker oxide scale leads to a lower COF. However, when the reduction increases 

to 40%, the difference of COF between the two oxide scale thicknesses is lessening. It 

can be seen that COF increases more with increased reduction when there was a 

thicker oxide scale on the stainless steel 445. As the reduction increases from 30 to 
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40%, through thickness cracks were formed more (Fig. 3), therefore, the soft stainless 

steel substrate could extrude from the oxide scale cracks and touch the roll surface.  

Moreover, there is a strong metallic bond between the high speed steel (HSS) roll and 

the steel 445 at high temperature [31], and this can easily cause occurrence of 

sticking. A slight difference in oxide scale thickness did not influence this 

deformation behaviour. Sticking may cause higher COF [32]. The grinding marks on 

the surface of the steel 445 caused higher COF at low and high reductions. The 

oscillation marks on the surface of the steel 445 had little effect on COF at the low 

reduction of 17.5%, and the surface was not levelled at the small reduction. However, 

the COF was extremely high at the reduction of 43.5%.  

 

In hot sheet rolling of low carbon steels, the friction pickup for the carbon steels is 

rarely to occur due to the thick oxide scale on the sheet surface [33]. Moreover, the 

surface preparation is not important because of high scaling rate of carbon steels. 

Stainless steels, however, the sticking, or friction pickup are likely to occur. The 

parameters during the contact between the roll and the workpiece can directly 

influence this behaviour. Therefore, some methods were employed to eliminate  

sticking phenomenon: (a) promoting the formation of the oxide scale, whether it is 

iron oxides or Cr-rich oxides [10, 31, 32]; (b) adjusting the rolling parameters. For 

instance, increasing the rolling temperature or rolling speed [10, 33]; (c) adopting 

appropriate roll material [34, 35].  High speed steel (HSS) roll was more beneficial to 

prevent sticking compared to a Hi-Cr roll [35]; (d) lubrication. The polyphenylene 

sulphide (PPS) [33], Zinc dialkyl dithiophosphate (ZDDP) [36], calcium carbonate 

[37] and calcium sulfonate [38] used as lubricant additives to a base oil were 

beneficial to prevent surface sticking. 
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The surface preparation on the stainless steel 445 affects not only the surface 

appearance but also the coefficients of friction in hot rolling. It would suggest 

eliminating the defects with fewer and shallower marks on the stainless steel 445 

before the slabs are placed for reheating.  

 

Fig. 11 COF for different surface preparations at different reductions. The stainless 

steel 445 specimens were rolled at 1050 °C. 

4. Conclusions 

Oxidation tests of a ferritic stainless steel 445 having different surface preparations 

were performed in humid air. Hot rolling experiments were carried out on a 2-high 

Hille 100 experimental mill with surfaces having different oxide scale thickness and 

marks.  

1. Oxide scale thicknesses of the steel 445 formed at 1100 °C in humid air 

corresponded to the mass gains which followed a parabolic law. The composition and 

the density did not change much with increased oxidation time.  

2. The Cr-rich oxide scale on the steel 445 with a thickness of 6.0±0.26 µm 

displayed through thickness cracks when the reduction was higher than 30% at 1050 

°C in hot rolling. The differences in oxide scale thickness affected the rolling forces 
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and COFs at the rolling reduction less than 30%, but negligibly at the high reduction 

of 40%.  

3. The oxide scale was not grown thick enough to cover the grinding or 

oscillation marks on the steel 445 in a reheating environment. On the surface with 

grinding marks, the composition and the thickness were similar to those on the 

smooth surface. On the surface with oscillation marks, the oxide scale was not 

uniform and the compositions of the oxide scale varied and some of the oxide scales 

were flaked off during cooling process. 

4. The surface having grinding and oscillation marks affected the rolling forces 

and COF. The surface with grinding marks caused 30% more rolling force during the 

experiment and a higher COF than the smooth surface. The surface having oscillation 

marks caused small difference of rolling force at the low reduction but had a 

magnificent increase at the high reduction of 40%. The COFs varied at different 

reductions, but valued extremely high at the high reduction.  
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