
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2009

JOR: A Journal-guided Reconstruction Optimization for RAID-JOR: A Journal-guided Reconstruction Optimization for RAID-

Structured Storage Systems Structured Storage Systems

Suzhen Wu
Wuhan National Laboratory for Optoelectronics, suzhen66@gmail.com

Dan Feng
Huazhong University of Science & Technology, Wuhan, China, dfeng@hust.edu.cn

Hong Jiang
University of Nebraska-Lincoln, jiang@cse.unl.edu

Bo Mao
Wuhan National Laboratory for Optoelectronics,, maobo@gmail.com

Lingfang Zeng
Huazhong University of Science & Technology, Wuhan, China, lfzeng@hust.edu.cn

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Wu, Suzhen; Feng, Dan; Jiang, Hong; Mao, Bo; Zeng, Lingfang; and Chen, Jianxi, "JOR: A Journal-guided
Reconstruction Optimization for RAID-Structured Storage Systems" (2009). CSE Conference and
Workshop Papers. 20.
https://digitalcommons.unl.edu/cseconfwork/20

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17237514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/20?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors Authors
Suzhen Wu, Dan Feng, Hong Jiang, Bo Mao, Lingfang Zeng, and Jianxi Chen

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
cseconfwork/20

https://digitalcommons.unl.edu/cseconfwork/20
https://digitalcommons.unl.edu/cseconfwork/20

JOR: A Journal-guided Reconstruction Optimization for RAID-Structured
Storage Systems

Suzhen Wu∗, Dan Feng∗�, Hong Jiang†, Bo Mao∗, Lingfang Zeng∗ and Jianxi Chen∗
∗Wuhan National Laboratory for Optoelectronics, China

School of Computer Science & Technology, Huazhong University of Science & Technology, Wuhan, China
Email: {suzhen66, maobo.hust}@gmail.com, {dfeng, lfzeng, chenjx}@hust.edu.cn

†Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, USA
Email: jiang@cse.unl.edu

Abstract—This paper proposes a simple and practical RAID
reconstruction optimization scheme, called JOurnal-guided
Reconstruction (JOR). JOR exploits the fact that significant
portions of data blocks in typical disk arrays are unused. JOR
monitors the storage space utilization status at the block level
to guide the reconstruction process so that only failed data on
the used stripes is recovered to the spare disk. In JOR, data
consistency is ensured by the requirement that all blocks in
a disk array be initialized to zero (written with value zero)
during synchronization while all blocks in the spare disk also
be initialized to zero in the background.
JOR can be easily incorporated into any existing recon-

struction approach to optimize it, because the former is inde-
pendent of and orthogonal to the latter. Experimental results
obtained from our JOR prototype implementation demonstrate
that JOR reduces reconstruction times of two state-of-the-art
reconstruction schemes by an amount that is approximately
proportional to the percentage of unused storage space while
ensuring data consistency.

Keywords-RAID; storage system; reliability; reconstruction;
performance evaluation;

I. INTRODUCTION
RAID provides improved levels of performance, avail-

ability and reliability for storage systems over a single-disk
system [1]. When a disk fails, RAID with a hot-spare disk
will automatically switch to the reconstruction mode at a
degraded performance. The reconstruction process reads all
data blocks from surviving disks, rebuilds the data blocks
on a failed disk, and then writes the rebuilt data blocks onto
the spare disk. After recovering all failed data blocks, RAID
returns to the normal mode.
Recovering from disk failures is crucial to applications

that require both high performance and high reliability from
their storage subsystems [2]. Such systems demand not only
the ability to recover from a disk failure without losing
data, but also a reconstruction process that (1) minimizes
the reconstruction time, and (2) has minimal impact on user
and system performance, simultaneously.
As a result of the exponential growth in individual disk

capacity and system scale coupled with a stagnant improve-
ment in individual disk failure rate, reconstruction in such
systems may become the common mode rather than the

exception [3], [4]. To make things worse, the improvement
in seek and rotation time has been much slower than the
advance in individual disk capacity, thus significantly in-
creasing the length of the reconstruction process. Moreover,
latent sector errors [5] during reconstruction further increase
the probability of data loss. Thus, the RAID reconstruction
performance can have a serious impact on the reliability and
availability of RAID-structured storage systems.
Studies on RAID reconstruction have been concentrating

on how to improve the performance of RAID reconstruction
algorithms. To regenerate each lost block on the failed disk,
most existing reconstruction algorithms [2], [6]–[11] read all
remaining blocks in its stripe group in all surviving disks,
calculate to regenerate the block, and then write the newly
rebuilt block onto the spare disk.
In contrast, Sivathanu et al. [12] proposed a live-block

recovery method that recovers only the live data to the
spare disk to speedup the reconstruction process. However,
live-block recovery must rely on file system’s semantic
knowledge to determine which blocks are live and should be
recovered, which thus limits its applicability since it remains
largely impractical to obtain file semantic information at the
block level for general file systems. Furthermore, live-block
recovery is effective only for replication-based disk arrays
(e.g., RAID1 and RAID10), but not applicable for parity-
based disk arrays (e.g., RAID5 and RAID6) due to possible
data inconsistency and data loss (see Section II-B for detail).
Inspired by live-block recovery [12], we propose a JOR

(JOurnal-guided Reconstruction) optimization scheme to im-
prove RAID reconstruction performance. The main idea
behind JOR is to reconstruct the blocks in used stripes
to their corresponding locations on the spare disk and
ignore the unused stripes, by monitoring which stripes have
been used and which stripes remain unused at the block
level. JOR has the potential to recover the RAID-structured
storage system more quickly than existing approaches and
is applicable for all RAID levels. Importantly, JOR ensures
data consistency constantly and does not incur data loss
during reconstruction. More significantly, JOR is orthogonal
to and can be easily incorporated into most existing RAID

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.69

609

reconstruction approaches without modifying the file system
or operating system.
We implement a JOR prototype by incorporating the

JOR optimization into two state-of-the-art reconstruction
approaches, PR [8] and PRO [9], [13], in the Linux software
RAID (MD). The off-line and trace-driven experiments
show that JOR-enhanced PR and PRO outperform their
unenhanced counterparts in reconstruction time consistently
by an amount that is proportional to the percentage of
unused storage space. Accordingly, JOR reduces the period
of performance degradation.
The rest of this paper is organized as follows. Background

and motivation are presented in Section II. In Section III
we describe the design and implementation of the JOR
optimization. Performance evaluation and discussion are
presented in Section IV. Related work is presented in
Section V. We conclude this paper by summarizing the main
contribution of this paper in Section VI.

II. BACKGROUND AND MOTIVATION
A. Unused storage space
In the real world, storage systems are deployed for long-

time runs so that its capacity is always outgrowing the
demand [14]. In addition, recent studies indicate that the
annualized failure rates of disks are generally higher than
those reported by manufactures [3], [4]. To cope with the
increased disk failure rates, data centers that employ large-
scale disk-based storage systems routinely deploy sufficient
amount of spare disk capacity for the purpose of data
reconstruction and/or absorbing peak performance demands.
Thus, at the time of data reconstruction for a failed disk,
there is usually a great deal of unused storage space.
Furthermore, Gray [15] reported that disks at Microsoft

are only 30% full on average. Agrawal et al. [16] found that
the median fullness of file system has decreased from 47% to
42% during the five-year study of the file system metadata.
Through the 45 days of traces collected from servers, Hsu &
Smith [17] found that only less than 50% of the disk space
has been accessed.
It must be noted that unused blocks at the block level are

different from free blocks at the file level, because the file-
system deletion operation is likely to result in some used
blocks to be free blocks. However, studies show that the
deletions can be negligible for most file systems. Based on
36 sets of traces collected from PCs running the Microsoft
Windows95 operating system, Zhou & Smith [18] concluded
that the “DELETE” operation only accounts for 0.16% of the
total file system calls. Recently, Traeger et al. [19] showed
that the number of delete-inode operations is quite small
during the build process.
Studies [18], [19] also show that most dead blocks, except

for the unallocated blocks, are produced by being overwrit-
ten at the file level rather than being deleted or truncated.
Based on a write-back cache policy, delayed writes allow

1 1 1 1

D1 D2 D3 P

(a) The file locating in this stripe
has been deleted, but the data still
exists in the device.

1 1 1 0

D1 D2 D3 P

(b) The fourth disk fails but P is
not rebuilt. So the value in P of
the spare disk is random.

0 1 1 1

D1 D2 D3 P

(c) A small write arrives at D1 and
P is updated.

1 1 1 1

D1 D2 D3 P

(d) The first disk fails and D1 is
reconstructed.

Figure 1. An example of data loss caused by live-block recovery for
parity-based RAID.

programs to continue executing after writing data to the
cache but not the disks.Thus, temporary files that exist for
less than 30 seconds are often deleted from the cache before
they must be written to the disks [20]. Furthermore, if
the storage system exploits NVRAM to buffer write data,
multiple overwrites can be absorbed into a single write to
the hard disk [21]. In conclusion, overwrites are shown not
to impact disks at the block level for the most part, especially
for the cached storage systems.
Consequently, researchers are increasingly looking for

creative ways to effectively utilize the unused storage space.
For example, the research conducted at Princeton explores
ways to trade off capacity for performance [22]. FS 2 uses the
free disk space to dynamically change the disk layout, thus
increasing disk I/O performance [23]. PARAID [14], write
off-loading [24] and Everest [25] exploit the unused storage
space at the block level to store the migrated data, thus
improving energy efficiency or peak performance. There-
fore, we can confidently conclude that there is significant
unused capacity at the block level, especially in the Content
Addressable Storage (CAS) [26], in which the fixed contents
are written once and never changed.

B. Reconstruction problem with live-block recovery in
parity-based RAID

As mentioned in Section I, live-block recovery [12] is
effective for replication-based RAID, but not applicable for
parity-based RAID. The reason is that the stripes across all
the disks that cover the un-recovered blocks will lose their
data consistency during recovery. If a subsequent disk fails
after completing the previous reconstruction process, it is
likely to be unable to recover the failed data. Fig. 1 gives
an example to illustrate the scenario in detail.
(1) Suppose that a RAID5 disk array consists of four

disks. Fig. 1(a) shows the data layout of one stripe
in the disk array before a disk failure. D1, D2 and
D3 denote the data blocks while P denotes the parity
block. “1” indicates that the data in the block is all
“1” while “0” indicates that the data in the block is
all “0”. When the data in the stripe has been deleted in
the file system, the data blocks and parity block (“1”)

610

still remain in the disk drives. Note: D1 xor D2 xor
D3 = P.

(2) The fourth disk fails. In this stripe, the failed block
is the parity block. If the deleted stripe is detected
and identified as dead, the parity block will not be
recovered to the spare disk. The value in the P location
of the spare disk will be random, i.e., “0” or “1”. In
order to describe the problem clearly, we assume it to
be “0”, as shown in Fig. 1(b). Note: D1 xor D2 xor
D3 �= P.

(3) After the reconstruction process completes, a small
write arrives at the D1 location. Suppose that the write
data is “0”. The parity should be recalculated and
written to the P location. New P = new D1(“0”) xor
old D1(“1”) xor old P(“0”) = “1”. Currently, D1 is
a live block and the exact data value is “0”, as shown
in Fig. 1(c). Note: D1 xor D2 xor D3 �= P.

(4) Unfortunately, the first disk fails and a new spare disk
is added to reconstruct the data of the failed disk. Now,
since the stripe contains a live block, the stripe should
be recovered, as shown in Fig. 1(d). D1 = D2(“1”)
xor D3(“1”) xor P(“1”) = “1”. Note: D1 is incorrect
now and we will be unable to obtain the correct data
beyond this point.

From the above example, we can see that if the dead
blocks at the file level are not recovered, data loss is likely
to occur, implying that live-block recovery is not feasible for
parity-based RAID. Due to this shortcoming of live-block
recovery, we propose a simple and practical block-level
JOR optimization scheme that speeds up the reconstruction
process and avoids data loss simultaneously.

III. JOURNAL-GUIDED RECONSTRUCTION(JOR)
In this section, we first define what “used” and “unused”

blocks are at the block level and describe the system require-
ment. Then we present a description of the data structure
and algorithm of the JOR optimization. The data consistency
issue and the prototype implementation are discussed at the
end of this section.

A. Definition of used and unused blocks
Generally, each stripe in a disk array is in one of the

following three states:
(1) Allocated, it is currently allocated by the higher-level

system (e.g., file system or database system) to store
data;

(2) Released, it was previously allocated but subsequently
released as the data was deleted or moved elsewhere;

(3) Unallocated, it has never been allocated.
Sivathanu et al. [21] concluded that the block liveness

information, which describes whether a block holds valid
data currently, cannot be tracked accurately in traditional
storage systems since the storage system is unaware of which
blocks are thought to be live by the file system. In this paper,

D0

D3

D6

P9-11

D1

D4

P6-8

D9

D2

P3-5

D7

D10

P0-2

D5

D8

D11

+

Disk 1 Disk 2 Disk 3 Disk 4

(a) Traditional synchronization

JBT

0

0

0

0

D0

D3

D6

P9-11

D1

D4

P6-8

D9

D2

P3-5

D7

D10

P0-2

D5

D8

D11

0 0 0 0

Disk 1 Disk 2 Disk 3 Disk 4

(b) Modified synchronization
Figure 2. Traditional and modified synchronization process.

we adopt a weaker form of this liveness. That is, we refer
to the state Allocated as used and the state Unallocated
as unused. Also, we refer to the state Released as used,
implying that failed blocks in this state should be rebuilt
to ensure data consistency in JOR, for reasons shown in
Section II-B. Fortunately, Section II-A demonstrates that the
Released blocks accounts for only a small part.

B. Modified synchronization for JOR
The goal of synchronization, when creating and initializ-

ing a disk array, is to ensure data consistency at the block
level. Based on the traditional synchronization approaches,
as shown in Fig. 2(a), the reconstruction process must be
applied to all data blocks on the surviving disks, which is
not applicable for JOR. Thus, we modify the synchronization
process. For any RAID level, all blocks in a disk array are
initialized to zero (written with value zero) during synchro-
nization, as shown in Fig. 2(b). Noticeably, the overhead of
the modified synchronization process is comparable with or
even better than that of the traditional counterpart.
In addition, all blocks in the spare disk are also initialized

to zero in the background prior to reconstruction. Thus, data
consistency is ensured in JOR that reconstructs only the used
stripes, since all blocks in the unused stripes in the surviving
disks and the spare disk are all zero blocks.

C. Data structure and algorithm
JOR relies on one key data structure, namely, JBT (Journal

Bitmap Table). JBT stores the storage space utilization status
at the block level. A journal bit per stripe (short for bitmap)
is used to indicate whether the stripe has been used or not.
“1” indicates that the corresponding stripe has been used
while “0” indicates that the corresponding stripe remains
unused. When a disk array is created, all bits of JBT are
initialized to “0”, indicating that all stripes in this disk
array are unused. When a stripe receives a write request,
the corresponding bitmap is set to be “1”, indicating that
the stripe is now used.

611

D0

D3

D6

P9-11

D1

D4

P6-8

D9

D2

P3-5

D7

D10

P0-2

D5

D8

D11

+

1

0

1

0

JBT

D2

P3-5

D7

D10

hot-spareDisk 1 Disk 2 Disk 3 Disk 4

(a) Reconstruction process, if bitmap=1

JBT

1

0

1

0

D0

D3

D6

P9-11

D1

D4

P6-8

D9

D2

P3-5

D7

D10

P0-2

D5

D8

D11

Skip

D2

P3-5

D7

D10

hot-spareDisk 1 Disk 2 Disk 3 Disk 4

(b) Reconstruction process, if bitmap=0
Figure 3. The JOR process for RAID5.

Fig. 3 illustrates the JOR-enhanced RAID5 reconstruction
process. In the reconstruction thread of JOR, each stripe is
first checked for its utilization status in JBT. If the stripe is
used (i.e., bitmap=1), all surviving blocks in the stripe are
read from surviving disks to rebuild the failed block to the
spare disk, as shown in Fig. 3(a). Otherwise (i.e., bitmap=0),
JOR skips the unused stripe, as shown in Fig. 3(b). For
other RAID levels, unused stripes are skipped by the JOR
reconstruction process in exactly the same way as in RAID5.
Since all blocks in unused stripes are zero blocks, for

each write request to an unused stripe during reconstruction,
the new parity is simply the parity-calculation of the newly
written data blocks in this stripe. Thus, each write request
to an unused stripe only entails writing the new data and
new parity to the disks, as opposed to reading the old data
and old parity first for a used stripe. This means that the
small-write penalty well known in parity-based RAID can
be alleviated in JOR.
When receiving a write request in the normal mode, if the

corresponding bitmap of JBT is “0”, it is set to “1” before
writing the data to the device and the new parity can be
calculated with the write data without reading the old data
and the old parity. Otherwise, the write request is processed
in the same way as in the original approach. JOR does not
change how read requests are handled.

D. Data consistency

Data consistency in JOR dictates that: (1) the key data
structure must be safely stored without loss and (2) skipping
unused stripes in reconstruction must not incur data loss.
First, JBT cannot be lost after it is created and initialized,

otherwise the data in the disk array will become inconsistent.
Accordingly, before a disk array is powered down, JBT must
be flushed to the superblock in all disks of the disk array or a
dedicated NVRAM. Then when the disk array is powered up
again, JBT is read back to the memory. Moreover, to prevent
data loss in the event of a power supply failure, JBT must be

I/O Workload

Check

JBT

F
a

i
l
e
d

D
i
s
k

D
i
s
k

D
i
s
k

S
p

a
r
e

D
i
s
k

+

Request

Monitor

Reconstruction

Thread

JOR

1

0

1

0

Figure 4. JOR organization.

stored in non-volatile memory (i.e., battery-backed RAM)
during the entire period when the corresponding RAID is
activated. In a word, the life cycle of JBT is consistent with
that of its attached disk array.
Second, skipping the dead blocks by live-block recovery

will incur possible data inconsistency and data loss, as
described in Section II-B. For JOR, since all blocks in
unused stripes of the surviving disks and spare disk are zero
blocks, even if the unused stripes are not reconstructed, the
data in these stripes are already consistent.

E. Prototype implementation
JOR can be embedded into any RAID software and can

be easily incorporated into any platforms based on block-
level devices. In this paper, we implement a JOR prototype
by embedding it into the Linux Software RAID (MD).
Fig. 4 shows the organization of our current JOR proto-

type implementation, including three key modules. Request
Monitor is responsible for keeping track of the storage
space utilization status at the block level and managing
JBT. Reconstruction Thread is responsible for reconstructing
the failed data blocks to the spare disk. Check helps the
Reconstruction Thread to decide whether a stripe should
be reconstructed. Once a disk fails, the JOR Reconstruction
Thread will be initiated. The reconstruction process has been
described in Section III-C.

IV. PERFORMANCE EVALUATIONS
In this section, we evaluate the performance of JOR

through extensive off-line and trace-driven experiments of
our JOR prototype implementation, and analyze the memory
overhead of JOR.

A. Experimental setup and methodology
We have incorporated JOR into MD’s default recon-

struction algorithm PR [8] and PRO-powered PR (PRO
for short) [9], [13]. In our experiments, we compare the
performance of JOR-enhanced PR (JOR+PR for short) with
that of PR and compare the performance of JOR-enhanced
PRO (JOR+PRO for short) with that of PRO in terms of
reconstruction time and average response time.

612

Table I
EXPERIMENTAL SETUP

Machine Intel Xeon 3.0GHz, 1GB DDR RAM
Device Adapter Highpoint RocketRAID 2220 SATA cards

Disks
WD2500YD SATA disk
Average Rotation Time=4.2ms
Average Seek Time=8.9ms

Financial1.spc:
Read Ratio=32.82%, Average IOPS=69

Trace Financial2.spc:
Characteristic Read Ratio=82.39%, Average IOPS=125

WebSearch.spc:
Read Ratio=100%, Average IOPS=113

Trace Replay Raidmeter [9]
OS Linux 2.6.11
RAID Software MD & mdadm 2.5.3

Table I lists the experimental configuration. In addition,
we use a separate IDE disk to house the operating system
and other software, and use the main memory to substitute
a battery-backed RAM for simplicity [10]. Since the work-
loads use only a fraction of the whole storage space, we
limit the capacity of each disk to 10GB in our experiments.
Performance evaluations use RAIDmeter [9], a block-level
trace-replay tool, to replay traces and evaluate the I/O
response time of the storage device.
The workloads used in our experiments are three traces

obtained from the Storage Performance Council [27].
The first two, Financial1 and Financial2, with different
read/write ratios and I/O intensity, were collected from
OLTP applications running at a large financial institution.
The last one, Websearch, was collected from a system run-
ning a popular web search engine. Due to the relatively short
reconstruction time in our current experimental setup, we use
the beginning part of these three traces with lengths appro-
priate for our current reconstruction experiments. Moreover,
we only use one part of the Websearch trace that is attributed
to device zero as its IOPS (i.e., I/O Per Second) is too high
for our RAID set, similar to [10].

B. I/O performance in the normal mode
As described in Section III-C, the JBT setting process

spends some CPU cycles computing which stripe the current
write request is involved. Thus, it may impact the I/O per-
formance, specifically the write performance. Is this impact
acceptable to the higher-level systems and end users? This
subsection attempts to answer this question.
We conduct experiments to compare the I/O performance

of original MD and JOR-enhanced MD in the normal mode
on a platform of an 8-disk RAID5 disk array with a stripe
unit size of 64KB, driven by the two Financial traces,
respectively. Each test lasts one hour. In our experiments,
the JBT setting process leads to less than 1.5% I/O per-
formance loss in terms of average user response time (i.e.,
1.47% and 0.88% for the Financial1 and Financial2 traces,
respectively). This level of performance cost is the same as
that induced by the Journal-guided Resynchronization for
Software RAID [28] and is arguably acceptable to the users.

0

40

80

120

160

200

0% 10% 30% 50% 70% 90% 100%

Percentage of Unused Storage Space

R
e
c
o

n
s
t
r
u

c
t
i
o

n

T

i
m

e

(
s
)

PR

JGR+PR-worst

JGR+PR-best

Figure 5. A comparison of PR and JOR-enhanced PR in off-line
reconstruction time for a RAID5 disk array.

Given that the JBT setting process is carried out exclu-
sively in the main memory and only affects write requests,
along with the fact that processing capacity in storage
systems is increasingly abundant, the I/O performance of
JOR-enhanced MD in the normal mode is likely to approach
that of the original MD.

C. Off-line reconstruction performance
We then conduct experiments on an 8-disk RAID5 disk

array with a stripe unit size of 64KB and compare the off-
line reconstruction time of PR and JOR+PR with respect to
the percentage of unused storage space, as shown in Fig. 5.
For JOR, we measure two cases [12]: (1) the worst case,
where unused space is spread throughout the disk array,
and (2) the best case, where unused space is compacted
into a single portion of the disk array. Since the off-line
reconstruction workflow of PRO is exactly the same as that
of PR, we do not evaluate PRO in the off-line experiments.
Fig. 5 shows that, regardless of how much storage space

has been used, the reconstruction time of PR is 176 second,
which is restricted by the capacity and positioning time of
the disks used in our experiments. Thus, PR is completely
oblivious of the space utilization status. On the other hand,
JOR+PR reduces the reconstruction time by an amount that
is proportional to the percentage of unused storage space.
Note that the results of JOR+PR are almost the same for both
the best and worst case scenarios. Therefore, for simplicity,
we only deploy the best case in the following experiments,
that is, the unused space is sequential.

D. On-line reconstruction performance
In addition, we also conduct on-line reconstruction exper-

iments on an 8-disk RAID5 disk array with a stripe unit size
of 64KB. With respect to the percentage of unused storage
space, we compare the on-line reconstruction time of PR,
JOR+PR, PRO and JOR+PRO, as shown in Table II. The
reconstruction bandwidth range is set be 10MB/s–200MB/s,
that is, RAID favors user I/O requests while ensuring that
the reconstruction speed is at least 10MB/s [10].
Table II shows that JOR+PR and JOR+PRO reduce the re-

construction time from their unenhanced counterparts by an
amount that is approximately proportional to the percentage
of unused storage space. The results are consistent to those

613

Table II
THE RECONSTRUCTION TIME RESULTS FOR A RAID5 DISK ARRAY.

Workload Percentage of Reconstruction Time (second)
Unused Space PR JOR+PR improved PRO JOR+PRO improved

Financial1

10%

809.9

708.3 12.54%

778.2

677.5 12.95%
30% 502.3 37.98% 484.4 37.75%
50% 310.7 61.63% 281.4 63.84%
70% 133.6 83.50% 128.1 83.54%
90% 59.3 92.67% 55.4 92.89%

Financial2

10%

717.5

672.3 6.31%

677.7

642.9 5.13%
30% 557.4 22.31% 531.9 21.50%
50% 440.1 38.66% 432.8 36.13%
70% 293.3 59.12% 291.4 57.00%
90% 99.8 86.09% 99.5 85.32%

Websearch

10%

1000.2

900.1 10.01%

1000.5

900.7 9.97%
30% 699.3 30.08% 700.3 30.00%
50% 498.6 50.05% 500.6 49.96%
70% 299.2 70.08% 299.3 70.08%
90% 99.7 90.03% 99.9 90.02%

in the off-line reconstruction experiments. For the Financial1
trace, JOR improves the reconstruction performance of PR
and PRO by an amount that is noticeably larger than the
percentage of the unused storage space. For the Financial2
trace, the result is exactly the opposite. The reason is that the
I/O intensity of the Financial1 trace is significantly lower in
its early portion than in its later portion while the opposite
is true for the Financail2 trace. For the Websearch trace, I/O
requests are distributed uniformly and so JOR reduces the
reconstruction time also uniformly.
Notice also that JOR does not directly optimize the I/O

performance (i.e., user response time) during reconstruction.
In our experiments, the average user response time during
reconstruction for the JOR-enhanced schemes is almost the
same as that during the same period for the unenhanced
counterparts. Nevertheless, JOR enables the disk array to
return to the normal mode much more quickly and thus
reduces the period of performance degradation significantly.
As a result, we will not focus on the I/O performance during
reconstruction in the following evaluations.
To examine the performance impact on JOR by the

different RAID levels and different reconstruction band-
widths, we conduct experiments on an 8-disk disk array with
variable RAID levels of RAID5, RAID6 and RAID10. We
set the reconstruction bandwidth range to be the default (i.e.,
1MB/s–200MB/s), making the RAID reconstruction process
yield to user I/O requests. For RAID6, we measure the
reconstruction time when two disks fail simultaneously.
Fig. 6 shows that JOR reduces the reconstruction time

by an amount that is roughly proportional to the increasing
percentage of unused storage space. For the Financial1 trace,
JOR does not reduce the reconstruction time by an amount
that is absolutely proportional to the percentage of unused
storage space . The Websearch trace is so intense that the
reconstruction speed remains at approximately 1MB/s, the
set minimal bandwidth, for the three RAID levels. Although
the Financial2 trace is less intense than the Websearch
trace, it is relatively stable so that the reconstruction speed

remains also stable. The performance improvement by JOR
for intense or stable traces is similar to that during off-line
reconstruction for the most part.
In addition, we scale up the minimal reconstruction band-

width and conduct experiments on different stripe unit sizes
and different numbers of disks in a disk array to assess their
impact on reconstruction performance. The results show the
same trend as that mentioned above. In other words, the
reconstruction performance of JOR is only sensitive to the
percentage of unused storage space.

E. Memory overhead

This part of the evaluation answers the question of “how
much extra memory does JOR require to implement
JBT?”. Suppose that there are n disks in the disk array, the
individual disk capacity is cKB, and the stripe unit size is
sKB. One bit denotes one stripe. Equation (1) shows the
extra memory overhead to maintain JBT. Noticeably, the
memory overhead is independent of the number of disks
in a disk array.

JBT =
c

s × 8
Byte (1)

In our current implementation, if the stripe unit size is the
same as the Linux kernel page size (i.e., 4KB), representing
all stripe status of a disk array consisting of n 500GB disks
in JBT will consume 15.625MB memory. Since the cost of
memory continues to decline and the capacity continues to
increase [29], the non-volatile memory used for storing JBT
is arguably no longer an issue.

V. RELATED WORK

Since the performance of reconstruction affects the reli-
ability and availability of RAID-structured storage systems,
the storage research community has put in a great deal of
effort to the development of effective reconstruction schemes
to minimize the reconstruction time and the performance

614

0

500

1000

1500

2000

2500

0% 10% 30% 50% 70% 90% 100%

Percentage of Unused Storage Space

R
e
c
o

n
s
t
r
u

c
t
i
o

n

T

i
m

e

(
s
)

RAID5-PR RAID5-JOR+PR

RAID6-PR RAID6-JOR+PR

RAID10-PR RAID10-JOR+PR

(a) Financial1

RAID5-PR RAID5-JOR+PR

RAID6-PR RAID6-JOR+PR

RAID10-PR RAID10-JOR+PR

0

500

1000

1500

2000

2500

0% 10% 30% 50% 70% 90% 100%

Percentage of Unused Storage Space

R
e
c
o

n
s
t
r
u

c
t
i
o

n

T

i
m

e

(
s
)

(b) Financial2

RAID5-PR RAID5-JOR+PR

RAID6-PR RAID6-JOR+PR

RAID10-PR RAID10-JOR+PR

0

2000

4000

6000

8000

10000

0% 10% 30% 50% 70% 90% 100%

Percentage of Unused Storage Space

R
e
c
o

n
s
t
r
u

c
t
i
o

n

T

i
m

e

(
s
)

(c) Websearch
Figure 6. A comparison of PR and JOR-enhanced PR in on-line reconstruction time.

degradation in recent yeas. There are three general ap-
proaches to addressing the problem by focusing on different
aspects of the reconstruction process.
The first general RAID reconstruction approach reorga-

nizes the data layout to improve reconstruction performance.
Distributed sparing [7] leverages the I/O response time
and disk rebuild time by decreasing the parity group size.
FARM [11] reduces the data recovery time by exploiting
the excess disk capacity in large-scale distributed storage
systems. The client-driven rebuild approach [30] based on
a per-file RAID layout achieves good recovery performance
by allowing the clients to build files in parallel.
The second general approach improves reconstruction

performance by optimizing the reconstruction workflow [2],
[6], [8]. SOR (Stripe-Oriented Reconstruction) [6] creates a
number of reconstruction processes associated with stripes,
while DOR (Disk-Oriented Reconstruction) [2] generates a
group of processes associated with each corresponding disk.
Although DOR outperforms SOR in reconstruction time,
the improvement in reliability comes at the expense of per-
formance degradation in user response time. PR (Pipelined
Reconstruction) [8] takes advantage of the sequential prop-
erty of track retrievals to pipeline the reading and writing
processes.
The third general approach focuses on optimizing the

reconstruction sequence [9], [31], [32]. The head-following
reconstruction algorithm [32] tracks the movement of the
disk heads to minimize the head positioning time by recon-
structing data and parity in the region of the array currently
being accessed by the users, but leads to almost immediate
deadlock of the reconstruction process. The greedy algo-
rithm [31] first reconstructs the tracks near the current head
position, but keeps a large table of the tracks reconstructed.
PRO (Popularity-based multi-threaded Reconstruction Opti-
mization) [9] makes the reconstruction process rebuild the
frequently accessed areas prior to other areas by exploiting
the access locality, thus improving the system performance
and reliability simultaneously.
On the other hand, Wu et al. [10] proposed WorkOut

that outsources all writes and popular reads away from the
degraded RAID set to a surrogate RAID set during re-
construction to significantly improve on-line reconstruction
performance. JOR is complementary to WorkOut and can

further improve the reconstruction performance.
In all above reconstruction approaches, all data blocks

in surviving disks should be read and calculated during
reconstruction. Live-block recovery [12] that reconstructs
only the live data to the spare disk is the most related work to
JOR, but it is impractical and not applicable for parity-based
disk arrays. JOR not only ensures data consistency during
reconstruction for all RAID levels, but also can be easily
incorporated into most existing reconstruction algorithms
without modifying the file system or operating system.

VI. CONCLUSION
The performance of the reconstruction process becomes

increasing more crucial to the reliability and availability of
RAID-structured storage systems. In this paper, we propose
and evaluate a simple and practical reconstruction optimiza-
tion scheme, called JOurnal-guided Reconstruction (JOR), to
significantly reduce the reconstruction time. JOR monitors
the storage space utilization status at the block level to guide
the reconstruction process so that only failed data on the
used stripes is rebuilt to the spare disk. JOR is applicable
for all RAID levels and can be easily adopted in various
conventional reconstruction algorithms.
Experimental results demonstrate that both the JOR-

enhanced PR and PRO reduce reconstruction times of their
unenhanced counterparts by an amount that is proportional
to the percentage of unused storage space. In addition, the
performance overhead due to the JBT setting process is less
than 1.5% of the system performance in the normal mode
in our experiments, which is a reasonable and acceptable
cost for the significantly reduced reconstruction time from
the user’s point of view.

ACKNOWLEDGMENT
This work is supported by the National Basic Research

973 Program of China under Grant No. 2004CB318201,
863 project 2008AA01A402, Changjiang innovative group
of Education of China No. IRT0725, and the US NSF under
Grant No. CCF-0621526.

REFERENCES
[1] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays

of Inexpensive Disks (RAID),” in Proc. International Conference on
Management of Data (SIGMOD’88), Chicago IL, USA, Jun. 1988,
pp. 109–116.

615

[2] M. Holland, G. Gibson, and D. Siewiorek, “Fast, On-Line Failure
Recovery in Redundant Disk Arrays,” in Proc. 23rd Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS’93), Toulouse,
France, Jun. 1993, pp. 421–433.

[3] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure Trends in a
Large Disk Drive Population,” in Proc. 5th USENIX Conference on
File and Storage Technologies (FAST’07), San Jose, CA, USA, Feb.
2007, pp. 17–28.

[4] B. Schroeder and G. A. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You?” in Proc.
5th USENIX Conference on File and Storage Technologies (FAST’07),
San Jose, CA, USA, Feb. 2007, pp. 1–16.

[5] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler, “An Analysis of Latent Sector Errors in Disk Drives,”
in Proc. 2007 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems (SIGMETRICS’07), San
Diego, CA, USA, Jun. 2007, pp. 289–300.

[6] M. Holland, G. Gibson, and D. Siewiorek, “Architectures and Al-
gorithms for On-Line Failure Recovery in Redundant Disk Arrays,”
Journal of Distributed and Parallel Databases, vol. 2, no. 3, pp. 295–
335, 1994.

[7] R. Hou, J. Menon, and Y. Patt, “Balancing I/O Response Time
and Disk Rebuild Time in a RAID5 Disk Array,” in Proc. Hawaii
International Conference on Systems Sciences (HICSS’93), Hawaii,
USA, Jan. 1993, pp. 70–79.

[8] J. Y. B. Lee and J. C. S. Lui, “Automatic Recovery from Disk Failure
in Continuous-Media Servers,” IEEE Transaction On Parallel and
Distributed Systems, vol. 13, no. 5, pp. 499–515, May. 2002.

[9] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and
Z. Song, “PRO: A Popularity-based Multi-threaded Reconstruction
Optimization for RAID-Structured Storage Systems,” in Proc. 5th
USENIX Conference on File and Storage Technologies (FAST’07),
San Jose, CA, USA, Feb. 2007, pp. 33–46.

[10] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “WorkOut: I/O Work-
load Outsourcing for Boosting RAID Reconstruction Performance,”
in Proc. 7th USENIX Conference on File and Storage Technologies
(FAST’09), San Francisco, CA, USA, Feb. 2009, pp. 239–252.

[11] Q. Xin, E. L. Miller, and T. J. E. Schwarz, “Evaluation of Distributed
Recovery in Large-Scale Storage Systems,” in Proc. 13th IEEE In-
ternational Symposium on High Performance Distributed Computing
(HPDC’04), Honolulu, HI, USA, Jun. 2004, pp. 172–181.

[12] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Improving Storage Sys-
tem Availability with D-GRAID,” in Proc. 3rd USENIX Conference on
File and Storage Technologies (FAST’04), San Francisco, CA, USA,
Mar. 2004, pp. 15–30.

[13] L. Tian, H. Jiang, D. Feng, Q. Xin, and X. Shu, “Implementation
and Evaluation of a Popularity-Based Reconstruction Optimization
Algorithm in Availability-Oriented Disk Arrays,” in Proc. 24th IEEE
Conference on Mass Storage Systems and Technologies (MSST’07),
San Diego, CA, USA, Sep. 2007, pp. 101–106.

[14] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and G. Kuen-
ning, “PARAID: The Gear-Shifting Power-Aware RAID,” in Proc. 5th
USENIX Conference on File and Storage Technologies (FAST’07), San
Jose, CA, USA, Feb. 2007, pp. 245–260.

[15] J. Gray, “Greetings! From a File System User,” in 4th USENIX
Conference on File and Storage Technologies (FAST’05). Keynote
Address, San Francisco, CA, USA, Feb. 2005.

[16] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A
Five-Year Study of File-System Metadata,” in Proc. 5th USENIX
Conference on File and Storage Technologies (FAST’07), San Jose,
CA, USA, Feb. 2007, pp. 31–45.

[17] W. W. S. Hsu and A. J. Smith, “The performance effect of I/O
optimizations and disk improvements,” IBM Journal Research and
Development, vol. 48, no. 2, pp. 255–289, 2004.

[18] M. Zhou and A. J. Smith, “Analysis of Personal Computer Work-
loads,” in Proc. 7th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MAS-
COTS’99), College Park, MD, USA, Oct. 1999, pp. 208–217.

[19] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A Nine Year
Study of File System and Storage Benchmarking,” ACM Transactions
on Storage, vol. 4, no. 2, pp. 1–56, May. 2008.

[20] J. Ousterhout, H. D. Costa, D. Harrison, J. Kunze, M. Kupfer,
and J. Thompson, “A Trace-Driven analysis of the UNIX 4.2 BSD
File System,” in Proc. 15th ACM Symposimu on Operating Systems
Princiles (SOSP’85), Orcas Island, WA, USA, Dec. 1985, pp. 15–24.

[21] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Life or Death at Block-Level,” in Proc.
6th Symposium on Operating Systems Design and Implementation
(OSDI’04), San Francisco, CA, USA, Dec. 2004, pp. 379–394.

[22] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurth,
and T. E. Anderson, “Trading Capacity for Performance in a Disk
Array,” in Proc. 4th Symposium on Operating Systems Design and
Implementation (OSDI’00), San Diego, CA, USA, Oct. 2000, pp. 17–
32.

[23] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication
in Free Disk Space for Improving Disk Performance and Energy
Consumption,” in Proc. 20th ACM Symposium on Operating Systems
Principles (SOSP’05), Brighton, United Kingdom, Oct. 2005, pp.
263–276.

[24] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-Loading:
Practical Power Management for Enterprise Storage,” in Proc. 6th
USENIX Conference on File and Storage Technologies (FAST’08),
San Jose, CA, USA, Feb. 2008, pp. 253–267.

[25] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Row-
stron, “Everest: Scaling Down Peak Loads Through I/O Off-loading,”
in Proc. 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08), San Diego, CA, USA, Dec. 2008, pp. 15–
28.

[26] S. Rhea, R. Cox, and A. Pesterev, “Fast, Inexpensive Content-
Addressed Storage in Foundation,” in Proc. 2008 USENIX Annual
Technical Conference (USENIX’08), Boston, MA, USA, Jun. 2008,
pp. 143–156.

[27] OLTP Application I/O and Search Engine I/O. UMass Trace Reposi-
tory, “http://traces.cs.umass.edu/index.php/Storage/Storage.”

[28] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Journal-guided Resynchronization for Software RAID,” in Proc. 4th
USENIX Conference on File and Storage Technologies (FAST’05),
San Francisco, CA, USA, Dec. 2005, pp. 87–100.

[29] J. Gray, “Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality
is King,” in 3rd Biennial Conference on Innovative Data Systems
Research (CIDR’07). Keynote Address, San Francisco, CA, USA, Jan.
2007.

[30] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable Performance of the Panasas
Parallel File System,” in Proc. 6th USENIX Conference on File and
Storage Technologies (FAST’08), San Jose, CA, USA, Feb. 2008, pp.
17–33.

[31] E. Bachmat and J. Schindler, “Analysis of Methods for Scheduling
Low Priority Disk Drive Tasks,” in Proc. 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems (SIGMETRICS’02), Marina del Rey, CA, USA, Jun. 2002,
pp. 55–65.

[32] M. Holland, “On-Line Data Reconstruction in Redundant Disk Ar-
rays,” Ph.D Dissertation, Carnegie Mellon University, 1994.

616

	JOR: A Journal-guided Reconstruction Optimization for RAID-Structured Storage Systems
	
	Authors

	JOR: A Journal-guided Reconstruction Optimization for RAID-Structured Storage Systems

