187 research outputs found

    Palaeoecology of Oligo-Miocene macropodoids determined from craniodental and calcaneal data

    Get PDF
    Analyses of craniodental and calcaneal material of extant macropodoids show that both dietary and locomotor types are statistically distinguishable. Application of the craniodental data to fossil macropodoids from the Oligo-Miocene of South Australia (Lake Eyre Basin) and Queensland (Riversleigh World Heritage Area) shows that these taxa were primarily omnivores or browsers. Specialized folivorous browsers were more prevalent in the Queensland deposits than in those of South Australia, suggesting more mesic conditions in the former. The calcaneal data showed that the Oligo-Miocene taxa clustered with extant generalized hoppers, in contrast to prior speculation that balbarids were quadrupedal rather than bipedal

    Early Miocene fossil frogs (Anura: Leiopelmatidae) from New Zealand.

    Get PDF
    Author version made available in accordance with publisher copyright policy.The first pre-Quaternary anurans from New Zealand are reported from the Early Miocene (19–16 Ma) St Bathans Fauna based on 10 fossil bones. Four bones representing two new species differing in size are described in Leiopelma: Leiopelmatidae, and are the first Tertiary records for the family. Six indeterminate frog fossils are morphologically similar to leiopelmatids and represent two species consistent in size with those known from diagnostic material. These records are highly significant, as minimally, they reduce the duration of the leiopelmatid ‘ghost lineage’ by c.20 million years and demonstrate that a diversity of leiopelmatids has long been present on New Zealand, supporting the ancient dichotomy of the extant species based on molecular data

    Enacting agency: exploring how older adults shape their neighbourhoods

    Get PDF
    Within research on ageing in neighbourhoods, older adults are often positioned as impacted by neighbourhood features; their impact on neighbourhoods is less often considered. Drawing on a study exploring how person and place transact to shape older adults’ social connectedness, inclusion and engagement in neighbourhoods, this paper explores how older adults take action in efforts to create neighbourhoods that meet individual and collective needs and wants. We drew on ethnographic and community-based participatory approaches and employed qualitative and geospatial methods with 14 older adults in two neighbourhoods. Analysis identified three themes that described the ways that older adults enact agency at the neighbourhood level: being present and inviting casual social interaction, helping others and taking community action. The participants appeared to contribute to a collective sense of connectedness and creation of social spaces doing everyday neighbourhood activities and interacting with others. Shared territories in which others were present seemed to support such interactions. Participants also helped others in a variety of ways, often relating to gaps in services and support, becoming neighbourhood-based supports for other seniors. Finally, participants contributed to change at the community level, such as engaging politically, patronising local businesses and making improvements in public places. Study findings suggest the potential benefits of collaborating with older adults to create and maintain liveable neighbourhoods

    Toward Understanding Person–Place Transactions in Neighborhoods: A Qualitative-Participatory Geospatial Approach

    Get PDF
    Background and Objectives Emerging research regarding aging in neighborhoods emphasizes the importance of this context for well-being; however, in-depth information about the nature of person–place relationships is lacking. The interwoven and complex nature of person and place points to methods that can examine these relationships in situ and explore meanings attached to places. Participatory geospatial methods can capture situated details about place that are not verbalized during interviews or otherwise discerned, and qualitative methods can explore interpretations, both helping to generate deep understandings of the relationships between person and place. This article describes a combined qualitative-geospatial approach for studying of older adults in neighborhoods and investigates the qualitative-geospatial approach developed, including its utility and feasibility in exploring person–place transactions in neighborhoods. Research Design and Methods We developed and implemented a qualitative-geospatial approach to explore how neighborhood and person transact to shape sense of social connectedness in older adults. Methods included narrative interviews, go-along interviews, and global positioning system tracking with activity/travel diary completion followed by map-based interviews. We used a variety of data analysis methods with attention to fully utilizing diverse forms of data and integrating data during analysis. We reflected on and examined the utility and feasibility of the approach through a variety of methods. Results Findings indicate the unique understandings that each method contributes, the strengths of the overall approach, and the feasibility of implementing the approach. Discussion and Implications The developed approach has strong potential to generate knowledge about person–place transactions that can inform practice, planning, policy, and research to promote older adults’ well-being

    Dwarfism and feeding behaviours in Oligo–Miocene crocodiles from Riversleigh, northwestern Queensland, Australia

    Get PDF
    Instances of dwarfism in the fossil record are of interest to palaeontologists because they often provide insight into aspects of palaeoecology. Fossil species of Australian-Pacific mekosuchine genus Mekosuchus have been described as dwarf, primarily terrestrial crocodiles, in contrast with the nearly ubiquitous semi-aquatic habitus of extant crocodilians (Willis 1997). This hypothesis has been difficult to test because of limited knowledge of the cranial and postcranial skeleton of extinct taxa and the continuous nature of crocodilian growth. New crocodilian vertebral material from Riversleigh, northwestern Queensland, tentatively referred to Mekosuchus whitehunterensis Willis, 1997, displays morphological maturity indicative of adult snout-vent length little over a half-meter, proportionally smaller than extant dwarf taxa. Further, this material displays morphology that indicates a relatively large epaxial neck musculature for its body-size. These attributes suggest this dwarf mekosuchine employed unusual feeding behaviours. The ability to perform normal death-roll, de-fleshing behaviours would be limited in a mekosuchine of such small size. Given the powerful neck muscles and other anatomical features, it is more likely that this mekosuchine killed and/or dismembered its prey using a relatively forceful lifting and shaking of the head

    Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand's endemic mystacinids.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: New Zealand's lesser short-tailed bat Mystacina tuberculata is one of only two of c.1100 extant bat species to use a true walking gait when manoeuvring on the ground (the other being the American common vampire bat Desmodus rotundus). Mystacina tuberculata is also the last surviving member of Mystacinidae, the only mammalian family endemic to New Zealand (NZ) and a member of the Gondwanan bat superfamily Noctilionoidea. The capacity for true quadrupedal terrestrial locomotion in Mystacina is a secondarily derived condition, reflected in numerous skeletal and muscular specializations absent in other extant bats. The lack of ground-based predatory native NZ mammals has been assumed to have facilitated the evolution of terrestrial locomotion and the unique burrowing behaviour of Mystacina, just as flightlessness has arisen independently many times in island birds. New postcranial remains of an early Miocene mystacinid from continental Australia, Icarops aenae, offer an opportunity to test this hypothesis. RESULTS: Several distinctive derived features of the distal humerus are shared by the extant Mystacina tuberculata and the early Miocene Australian mystacinid Icarops aenae. Study of the myology of M. tuberculata indicates that these features are functionally correlated with terrestrial locomotion in this bat. Their presence in I. aenae suggests that this extinct mystacinid was also adapted for terrestrial locomotion, despite the existence of numerous ground-based mammalian predators in Australia during the early Miocene. Thus, it appears that mystacinids were already terrestrially-adapted prior to their isolation in NZ. In combination with recent molecular divergence dates, the new postcranial material of I. aenae constrains the timing of the evolution of terrestrial locomotion in mystacinids to between 51 and 26 million years ago (Ma). CONCLUSION: Contrary to existing hypotheses, our data suggest that bats are not overwhelmingly absent from the ground because of competition from, or predation by, other mammals. Rather, selective advantage appears to be the primary evolutionary driving force behind habitual terrestriality in the rare bats that walk. Unlike for birds, there is currently no evidence that any bat has evolved a reduced capacity for flight as a result of isolation on islands

    Miocene fossils show that kiwi (Apteryx, Apterygidae) are probably not phyletic dwarves

    Get PDF
    Copyright 2013 © Verlag Naturhistorisches Museum. Published version of the paper reproduced here with permission from the publisher. Publisher website: http://www.nhm-wien.ac.at/Until now, kiwi (Apteryx, Apterygidae) have had no pre-Quaternary fossil record to inform on the timing of their arrival in New Zealand or on their inter-ratite relationships. Here we describe two fossils in a new genus of apterygid from Early Miocene sediments at St Bathans, Central Otago, minimally dated to 19–16 Ma. The new fossils indicate a markedly smaller and possibly volant bird, supporting a possible overwater dispersal origin to New Zealand of kiwi independent of moa. If the common ancestor of this early Miocene apterygid species and extant kiwi was similarly small and volant, then the phyletic dwarfing hypothesis to explain relatively small body size of kiwi compared with other ratites is incorrect. Apteryx includes five extant species distributed on North, South, Stewart and the nearshore islands of New Zealand. They are nocturnal, flightless and comparatively large birds, 1–3 kg, with morphological attributes that reveal an affinity with ratites, but others, such as their long bill, that differ markedly from all extant members of that clade. Although kiwi were long considered most closely related to sympatric moa (Dinornithiformes), all recent analyses of molecular data support a closer affinity to Australian ratites (Casuariidae). Usually assumed to have a vicariant origin in New Zealand (ca 80–60 Ma), a casuariid sister group relationship for kiwi, wherein the common ancestor was volant, would more easily allow a more recent arrival via overwater dispersal

    Decoupling Functional and Morphological Convergence, the Study Case of Fossorial Mammalia

    Get PDF
    Morphological similarity between biological structures in phylogenetically distant species is usually regarded as evidence of convergent evolution. Yet, phenotypic similarity is not always a sign of natural selection acting on a particular trait, therefore adaptation to similar conditions may fail to generate convergent lineages. Herein we tested whether convergent evolution occurred in the humerus of fossorial mammals, one of the most derived biological structures among mammals. Clades adapting to digging kinematics possess unusual, by mammalian standards, humeral shapes. The application of a new, computationally fast morphological test revealed a single significant instance of convergence pertaining to the Japanese fossorial moles (Mogera) and the North-American fossorial moles (Scalopini). Yet, the pattern only manifests when trade-off performance data (derived from finite element analysis) are added to shape data. This result indicates that fossorial mammals have found multiple solutions to the same adaptive challenge, independently moving around multiple adaptive peaks. This study suggests the importance of accounting for functional trade-off measures when studying morpho-functional convergence. We revealed that fossorial mammals, a classic example of convergent evolution, evolved multiple strategies to exploit the subterranean ecotope, characterized by different functional trade-offs rather than converging toward a single adaptive optimum

    Dietary analysis of an uncharacteristic population of the Mountain Pygmy-possum (Burramys parvus) in the Kosciuszko National Park, New South Wales, Australia

    Get PDF
    Background The Mountain Pygmy-possum (Burramys parvus) is a critically endangered marsupial, endemic to alpine regions of southern Australia. We investigated the diet of a recently discovered population of the possum in northern Kosciuszko National Park, NSW, Australia. This new population occurs at elevations well below the once-presumed lower elevation limit of 1,600 m. Goals and Methods Faecal material was analysed to determine if dietary composition differed between individuals in the newly discovered northern population and those in the higher elevation southern population, and to examine how diet was influenced by rainfall in the southern population and seasonal changes in resource availability in the northern population. Results and Discussion The diet of B. parvus in the northern population comprised of arthropods, fruits and seeds. Results indicate the diet of both populations shares most of the same invertebrate orders and plant species. However, in the absence of preferred food types available to the southern population, individuals of the northern population opportunistically consumed different species that were similar to those preferred by individuals in higher altitude populations. Differing rainfall amounts had a significant effect on diet, with years of below average rainfall having a greater percentage composition and diversity of invertebrates. Seasonal variation was also recorded, with the northern population increasing the diversity of invertebrates in their diet during the Autumn months when Bogong Moths (Agrotis infusa) were absent from those sites, raising questions about the possum’s dependence on the species Conclusions Measurable effects of rainfall amount and seasonal variation on the dietary composition suggest that predicted climatic variability will have a significant impact on its diet, potentially impacting its future survival. Findings suggest that it is likely that B. parvus is not restricted by dietary requirements to its current pattern of distribution. This new understanding needs to be considered when formulating future conservation strategies for this critically endangered species

    Patterns of ontogenetic evolution across extant marsupials reflect different allometric pathways to ecomorphological diversity

    Get PDF
    The relatively high level of morphological diversity in Australasian marsupials compared to that observed among American marsupials remains poorly understood. We undertake a comprehensive macroevolutionary analysis of ontogenetic allometry of American and Australasian marsupials to examine whether the contrasting levels of morphological diversity in these groups are reflected in their patterns of allometric evolution. We collate ontogenetic series for 62 species and 18 families of marsupials (n = 2091 specimens), spanning across extant marsupial diversity. Our results demonstrate significant lability of ontogenetic allometric trajectories among American and Australasian marsupials, yet a phylogenetically structured pattern of allometric evolution is preserved. Here we show that species diverging more than 65 million years ago converge in their patterns of ontogenetic allometry under animalivorous and herbivorous diets, and that Australasian marsupials do not show significantly greater variation in patterns of ontogenetic allometry than their American counterparts, despite displaying greater magnitudes of extant ecomorphological diversity.Fil: Wilson, Ana Laura. The Australian National University; Australia. University of New South Wales; AustraliaFil: López Aguirre, Camilo. University of Toronto; CanadáFil: Archer, Michael. University of New South Wales; AustraliaFil: Hand, Suzanne J.. University of New South Wales; AustraliaFil: Flores, David Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Abdala, Nestor Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentina. Universidad Nacional de Tucumán; Argentin
    • …
    corecore