64 research outputs found

    Causes and Consequences of Genetic Robustness and Fragility in HIV-1 Proteins

    Get PDF
    Genetic robustness describes a capacity to maintain function in the face of mutation. RNA viruses, like human immunodeficiency virus-1 (HIV-1), experience extremely high mutations rates in vivo, which contribute to the evolvability that permits HIV-1 to evade immune defenses. However, the compact nature of the HIV-1 viral genome, in which small or overlapping proteins are often multifunctional and essential, often necessitates a strong pressure to conserve functional roles, which is at opposition with immunological pressures to diversify. Under such conditions, and in consideration of the relatively rapid replication cycle of HIV-1, natural selection for robustness would be predicted to be beneficial. At the same time, robustness can come at the cost of fitness, and it is unclear whether robustness or fitness would constitute the dominant selective force in the natural setting. Within a given virus, genetic robustness is expected to vary amongst proteins, in accordance with specific function. Therefore, to more accurately examine genetic robustness within HIV-1, we selected one protein in which the competing needs to both conserve function yet diversify sequence is particularly acute. HIV-1 capsid (CA) is under strong pressure to preserve roles in viral assembly, maturation, uncoating and nuclear import, but is also under intense immunological pressure to diversify, particularly from adaptive immune responses. To evaluate the genetic robustness of HIV-1 CA, we generated a large library of random single amino acid substitution CA mutants. Surprisingly, after measuring the replicative fitness of the CA library mutants, we observed HIV-1 CA to be the most genetically fragile protein analyzed with such an approach, with 70% of random CA mutations resulting in nonviable, replicationdefective viruses (\u3c2% of WT fitness). While CA is involved in several steps of HIV-1 replication, analyses of conditionally (temperature-sensitive) and constitutively nonviable mutants indicated that the biological basis for the genetic fragility, or lack of robustness, was principally the need to organize accurate and efficient assembly of mature viral particles. Examination of the CA library mutations in naturally occurring HIV-1 subtype B populations indicated that all mutations occurring at a frequency \u3e3% in vivo had fitness levels that were \u3e40% of WT in vitro. Moreover, protective CTL epitopes were observed to preferentially occur in regions of HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. Overall, these results suggest the extreme genetic fragility of CA may explain why immune responses to Gag, as opposed to other viral proteins, correlate with better prognosis in HIV-1 infection. To evaluate whether the fragility we observed in CA was unique to CA or a general property of HIV-1 proteins, and to more firmly establish causes and consequences of genetic robustness or fragility, we evaluated the robustness of another HIV-1 protein, integrase (IN). Again, a large library of unbiased single amino acid mutants was created. In contrast to CA, IN appeared comparatively robust, with only 35% of 156 single amino acid mutations resulting in nonviable viruses. However, when these nonviable mutants were mapped onto a model of the HIV-1 intasome, we noted a striking localization of nonviable mutants to certain IN subunit interfaces. To this end, single mutants affecting both particle production and IN expression in virions could be mapped to even more specific regions within the intasome model. Furthermore, after examining the prevalence of the IN library mutations in an in vivo cohort of subtype B IN sequences, mapping to the intasome helped explain why some in vitro library mutations with high fitness (\u3e40% of WT) never occur in vivo, and also revealed that residues that are highly variable in vivo are more likely to occur in regions in the intasome with more exposed surface area. Despite the relative robustness of HIV-IN, our analyses with an intasome model demonstrate that localized regions of fragility, namely certain subunit interfaces, exist. Understanding the genetic robustness of HIV-1 is particularly important given the continued need for novel therapeutic interventions. Not only has the evaluation of HIV-1 CA and IN robustness revealed particularly fragile regions in both proteins, which may prove ideal targets, but comparisons of their genetic robustness is suggestive of the direction future therapeutic research should take

    The envelope gene of transmitted HIV-1 resists a late interferon gamma-induced block

    Get PDF
    Type I interferon (IFN) signaling engenders an antiviral state that likely plays an important role in constraining HIV-1 transmission and contributes to defining subsequent AIDS pathogenesis. Type II IFN (IFNγ) also induces an antiviral state but is often primarily considered to be an immunomodulatory cytokine. We report that IFNγ stimulation can induce an antiviral state that can be both distinct from that of type I interferon, and can potently inhibit HIV-1 in primary CD4+ T cells and a number of human cell lines. Strikingly, we find that transmitted/founder (TF) HIV-1 viruses can resist a late block that is induced by type II IFN, and the use of chimeric IFNγ- sensitive/resistant viruses indicates that interferon-resistance maps to the env gene. Simultaneously, in vitro evolution also revealed that just a single amino acid substitution in envelope can confer substantial resistance to IFN-mediated inhibition. Thus, the env gene of transmitted HIV-1 confers resistance to a late block that is phenotypically distinct from those previously described to be resisted by env, and is therefore mediated by unknown IFNγ-stimulated factor(s) in human CD4+ T cells and cell lines. This important unidentified block could play a key role in constraining HIV-1 transmission

    Identification of Interferon-Stimulated Genes with Antiretroviral Activity

    Get PDF
    SummaryInterferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs

    Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20

    Get PDF
    Bunyaviruses pose a significant threat to human health, prosperity and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon stimulated genes (ISGs) whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional ribonuclease activity. Through use of an infectious VLP assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taken together, we report that ISG20 is a broad and potent antibunyaviral factor yet some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance could influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance

    TRIM69 inhibits vesicular stomatitis Indiana virus (VSIV)

    Get PDF
    Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies

    MHC class I chain-related protein A shedding in chronic HIV-1 infection is associated with profound NK cell dysfunction

    Get PDF
    Natural killer (NK) cells play a critical role in host defense against viral infections. However chronic HIV-1 infection is associated with an accumulation of dysfunctional NK cells, that poorly control viral replication. The underlying mechanisms for this NK cell mediated dysfunction are not understood. Certain tumors evade NK cell mediated detection by dampening NK cell activity through the downregulation of NKG2D, via the release of soluble NKG2D-ligands, resulting in a potent suppression of NK cell function. Here we show that chronic HIV-1 infection is associated with a specific defect in NKG2D-mediated NK cell activation, due to reduced expression and transcription of NKG2D. Reduced NKG2D expression was associated with elevated levels of the soluble form of the NKG2D-ligand, MICA, in patient sera, likely released by HIV+CD4+ T cells. Thus, like tumors, HIV-1 may indirectly suppress NK cell recognition of HIV-1-infected CD4+ T cells by enhancing NKG2D-ligand secretion into the serum resulting in a profound impairment of NK cell function

    The apparent interferon resistance of transmitted HIV-1 is possibly a consequence of enhanced replicative fitness

    Get PDF
    HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced ‘antiviral state’, we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    corecore