5 research outputs found

    Paracrine interactions through FGFR1 and FGFR2 receptors regulate the development of preimplantation mouse chimaeric embryo

    No full text
    The preimplantation mammalian embryo has the potential to self-organize, allowing the formation of a correctly patterned embryo despite experimental perturbation. To better understand the mechanisms controlling the developmental plasticity of the early mouse embryo, we used chimaeras composed of an embryonic day (E)3.5 or E4.5 inner cell mass (ICM) and cleaving 8-cell embryo. We revealed that the restricted potential of the ICM can be compensated for by uncommitted 8-cell embryo-derived blastomeres, thus leading to the formation of a normal chimaeric blastocyst that can undergo full development. However, whether such chimaeras maintain developmental competence depends on the presence or specific orientation of the polarized primitive endoderm layer in the ICM component. We also demonstrated that downregulated FGFR1 and FGFR2 expression in 8-cell embryos disturbs intercellular interactions between both components and results in an inverse proportion of primitive endoderm and epiblast within the resulting ICM and abnormal embryo development. This finding suggests that FGF signalling is a key part of the regulatory mechanism that assigns cells to a given lineage and ensures the proper composition of the blastocyst, which is a prerequisite for its successful implantation in the uterus and for further development

    Breakthroughs and challenges of modern developmental biology and reproductive medicine

    Get PDF
    : In recent decades we have witnessed unprecedented progress in the field of the developmental biology of mammals. Building on 20th century discoveries, we have managed to increase our understanding of the molecular and cellular mechanisms governing early mammalian embryogenesis and link them to other biological questions, such as stem cells, regeneration, cancer, or tissue and organ formation. Consequently, it has also led to a creation of a completely new branch of reproductive medicine, i.e. assisted reproductive technology (ART). In this Special Issue of The International Journal of Developmental Biology (Int. J. Dev. Biol.) we wished to review state-of-the-art research regarding early mammalian development, from fertilization up to the implantation stage, and discuss its potential meaning for practical applications, including ART. As an introduction to the issue we present a compilation of short essays written by the most renowned scientists in the field, working both in basic and clinical research. The essays are dedicated to the greatest breakthroughs and challenges of 21st century developmental biology and reproductive medicine

    Solid-Phase Synthesis of 1,3,4-Thiadiazole Derivatives via Desulfurative Cyclization of Thiosemicarbazide Intermediate Resin

    Get PDF
    A 1,3,4-thiadiazole library was constructed by solid-phase organic synthesis. The key step of this solid-phase synthesis involves the preparation of polymer-bound 2-amido-5-amino-1,3,4-thiadiazole resin by the cyclization of thiosemicarbazide resin using <i>p</i>-TsCl as the desulfurative agent, followed by the functionalization of the resin by alkylation, acylation, alkylation/acylation, and Suzuki coupling reactions. Both the alkylation and acylation reactions chemoselectively occurred at the 2-amide position of 2-amido-5-amino-1,3,4-thiadiazole resin and the 5-amine position of 2-amido-5-amino-1,3,4-thiadiazole resin, respectively. Finally, these functionalized 1,3,4-thiadiazole resins were treated with trifluoroacetic acid in dichloromethane, affording diverse 1,3,4-thiadiazole analogs in high yields and purities. The 1,3,4-thiadiazole analogs show a different distribution of physicochemical and biological properties compared with our previously constructed 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries in a range of orally available drug properties
    corecore