225 research outputs found

    From the macroscopic to the microscopic: some scientific insights

    Get PDF
    The full report in which this chapter appears is in ORE: http://hdl.handle.net/10871/1416

    Особенности реализации режимов пониженного энергопотребления при внедрении распределенной системы управления теплопотреблением здания

    Get PDF
    An integrated model, consisting of a distributed automatic control system, building heating system and individual heating unit is designed. The model is based on the Simulink application. The conducted research allowed to reveal features of heating system operation with distributed control system. The results of comparison the climatic variables of control rooms are presented. The conclusions about the possibility of increasing the energy efficiency of heating system in the implementation of distributed control systems are presented

    A new method to elucidate fracture mechanism and microstructure evolution in titanium during dissimilar friction stir welding of aluminum and titanium

    Get PDF
    In the friction stir welding (FSW) of dissimilar materials, the weld nugget exhibits composite properties and is composed of hard particles (high-strength material) distributed in a soft matrix material. The distribution of these particles influences the properties of the weld. Therefore, it is useful to characterize the deformation and fragmentation of the high-strength material from which they originate. In the current study, FSW of aluminum (Al) to titanium (Ti) was performed and a new technique was introduced to remove Al from the post-weld sample to characterize the deformation and fragmentation of Ti in the weld nugget. The post-weld sample showed that Ti particles were inhomogeneously distributed. It was understood that the plastic deformation of the Ti depends on its location of the wel

    Evolution of crystalline orientations in the production of ferritic stainless steel

    Get PDF
    Ferritic stainless steel EN 1.4016 is used in a wide range of applications, the most common ones related to sheet forming. Several problems in the post-processing of these steels relates to their texture and anisotropy. Therefore, it is necessary to know the mechanisms of texture formation in the subsequent stages of metal manufacturing processes. EBSD has been demonstrated as a successful characterisation technique for this purpose. It is known that during re-crystallisation of Fe-Cr steels, deviations from the desired.-fibre texture promote a decrease of deep drawability. Additionally, a-fibre damages formability. Subsequent cold rolling and annealing can enhance the deep drawing properties of the steel sheet. In this research, a standard sample and a modified one with optimised settings as regard to chemical composition and manufacturing process, to improve the formability properties, are characterised. To analyse the preferred orientation and the type of main fibre present in the material, ODF and Aztec Reclassify Phase, to calculate the content of martensite, were used

    The origin of fracture in the I-ECAP of AZ31B magnesium alloy

    Get PDF
    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener–Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C
    corecore