1,230 research outputs found
Transient thermal performance prediction method for parabolic trough solar collector under fluctuating solar radiation
As the effect of the global warming is becoming noticeable, the importance for environmental sustainability has been raised. Parabolic trough solar thermal collector system, which is one of the solutions to reduce the carbon dioxide emission, is a mature technology for electricity generation. Malaysia is a tropical country with long daytime, which makes suitable for solar thermal applications with parabolic trough solar thermal collectors. However, the high humidity causes the solar radiation to fluctuate. In order to simulate the solar thermal collectors’ performance at an early design stage of solar thermal power generation systems, fast still accurate transient thermal performance prediction methodis required. Although multiple transient thermal simulation methodologies exist, they are not suited especially at an early design stage where quick but reasonably accurate thermal performance prediction is needed because of their long calculation time. In this paper, a transient thermal prediction method is developed to predict exit temperature of parabolic trough collectors under fluctuating solar radiation. The method is governed by simple summation operations and requires much less calculating time than the existing numerical methods. If the radiation heat loss at the parabolic trough collector tube surface is small, the working fluid temperature rise may be approximated as proportional to the receiving heat flux. The fluctuating solar radiation is considered as a series of heat flux pulses applied for a short period of time. The time dependent solar collector exit temperature is approximated by superimposing the exit temperature rise caused by each heat flux pulse. To demonstrate the capabilities of the proposed methodology, the solar collector exit temperature for one-day operation is predicted. The predicted solar collector exit temperature captures the trend of a finite element analysis result well. Still, the largest temperature difference is 38.8K and accuracy is not satisfactory. Currently, the accuracy of the proposed method is being improved. At the same time, its capabilities are being expanded
Markov Chain Monte Carlo Method without Detailed Balance
We present a specific algorithm that generally satisfies the balance
condition without imposing the detailed balance in the Markov chain Monte
Carlo. In our algorithm, the average rejection rate is minimized, and even
reduced to zero in many relevant cases. The absence of the detailed balance
also introduces a net stochastic flow in a configuration space, which further
boosts up the convergence. We demonstrate that the autocorrelation time of the
Potts model becomes more than 6 times shorter than that by the conventional
Metropolis algorithm. Based on the same concept, a bounce-free worm algorithm
for generic quantum spin models is formulated as well.Comment: 5 pages, 5 figure
The Roles of Sketches in Early Conceptual Design Processes
Design sketches are believed to play essential roles in early conceptual design processes. Exploration of how sketches are essential for the formation of new design ideas is expected to bring important implications for design education and design support systems. Little research has been done, however, to empirically examine the ways in which designers cognitively interact with their own sketches. Using a protocol analysis technique, we examined the design thoughts of an architect from the following point of view; how he drew depictions, inspected depicted elements, perceived visuo-spatial features, and thought of non-visual functional or conceptual information. The findings suggest that design sketches serve not only as external memory or as a provider of visual cues for association of non-visual information, but also as a physical setting in which design thoughts are constructed on the fly
The Role of Collective Neutrino Flavor Oscillations in Core-Collapse Supernova Shock Revival
We explore the effects of collective neutrino flavor oscillations due to
neutrino-neutrino interactions on the neutrino heating behind a stalled
core-collapse supernova shock. We carry out axisymmetric (2D)
radiation-hydrodynamic core-collapse supernova simulations, tracking the first
400 ms of the post-core-bounce evolution in 11.2 solar mass and 15 solar mass
progenitor stars. Using inputs from these 2D simulations, we perform neutrino
flavor oscillation calculations in multi-energy single-angle and multi-angle
single-energy approximations. Our results show that flavor conversions do not
set in until close to or outside the stalled shock, enhancing heating by not
more than a few percent in the most optimistic case. Consequently, we conclude
that the postbounce pre-explosion dynamics of standard core-collapse supernovae
remains unaffected by neutrino oscillations. Multi-angle effects in regions of
high electron density can further inhibit collective oscillations,
strengthening our conclusion.Comment: v2: Added multi-angle calculations. Conclusions unchanged. 16 pages,
7 figures. Accepted to Phys. Rev. D after revisions: 15 Sept 2011 (major), 24
Jan 2012 (minor
Cluster Morphologies as a Test of Different Cosmological Models
We investigate how cluster morphology is affected by the cosmological
constant in low-density universes. Using high-resolution cosmological
N-body/SPH simulations of flat (\Omega_0 = 0.3, \lambda_0 = 0.7, \Lambda CDM)
and open (\Omega_0 = 0.3, \lambda_0 = 0, OCDM) cold dark matter universes, we
calculate statistical indicators to quantify the irregularity of the cluster
morphologies. We study axial ratios, center shifts, cluster clumpiness, and
multipole moment power ratios as indicators for the simulated clusters at z=0
and 0.5. Some of these indicators are calculated for both the X-ray surface
brightness and projected mass distributions. In \Lambda CDM all these
indicators tend to be larger than those in OCDM at z=0. This result is
consistent with the analytical prediction of Richstone, Loeb, & Turner, that
is, clusters in \Lambda CDM are formed later than in OCDM, and have more
substructure at z=0. We make a Kolmogorov-Smirnov test on each indicator for
these two models. We then find that the results for the multipole moment power
ratios and the center shifts for the X-ray surface brightness are under the
significance level (5%). We results also show that these two cosmological
models can be distinguished more clearly at z=0 than z = 0.5 by these
indicators.Comment: 30pages, 6figures, Accepted for publication in Ap
Concept study of microgrid dispatch strategy for solar thermal power plant with thermal storage
Complex grid systems have been gradually replaced by smaller and simpler grid systems called Microgrids. Integration of a solar thermal power generation systems into Microgrids open a new horizon of renewable energy power generation to achieve the supply and demand balance of electricity. Microgrid dispatch strategy is a control method of energy balance between power generation and electricity consumption. A thermal storage integrated into the system buffers the intermittency of solar radiation used as the heat source of the power generation system. The daily starting time for the power generation is determined by the dispatch strategy in search of minimum power from the conventional grid and maximum electricity generation from the solar thermal power generation system. In the simulation stage, the heat energy available for power generation and amount of thermal energy saved in the thermal storage is calculated at each time step using measured solar radiation data as the heat source and load profile data as the consumption required. Based on the simulation result, the power generation starting time for the next day is determined. The effectiveness of the proposed dispatch strategy is demonstrated by obtaining the best starting time and identifying minimum power requiredfrom the conventional grid. The power supply from the conventional grid is reduced by 10% by applying the proposed methodology
Human bony labyrinth is an indicator of population history and dispersal from Africa.
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons
Properties of holographic dark energy at the Hubble length
We consider holographic cosmological models of dark energy in which the
infrared cutoff is set by the Hubble's radius. We show that any interacting
dark energy model, regardless of its detailed form, can be recast as a non
interacting model in which the holographic parameter evolves slowly
with time. Two specific cases are analyzed. We constrain the parameters of both
models with observational data, and show that they can be told apart at the
perturbative level.Comment: 4 pages, 6 figures. Contribution to the Proceedings ERE201
- …