1 research outputs found

    ISO 50001: 2018 and Its Application in a Comprehensive Management System with an Energy-Performance Focus

    Get PDF
    [EN] Business progress and human development are linked to the efficient management of energy resources. The research in this paper contributes to the generalized application of good practices that reduce the vulnerability of companies. The research focuses on energy efficiency through comprehensive management systems (CMS), and "thought based on risks and opportunities", considering the discussion about the revision of ISO 50001:2018, the basic approach of the model and the route to implement CMS for quality, safety and health in the workplace, environmental management, energy efficiency, and other risk components. This implementation route, with the acronym CMS QHSE3+, places special emphasis on the functions of strategic planning, operational and risk management, and controls, as well as on deliverables and references to examples, templates, standards, and documents, to facilitate its application general in small and medium enterprises and in the management of energy efficiency.We express our gratitude for the support received, to CAJACOPI ATLÁNTICO, QUARA Group, ASTEQ Technology, Simón Bolivar University, the Universitat Politècnica de València, SANTO TORIBIO Business Group, and to all the personalities and companies who offered us their contributions and their valuable points of view.Poveda-Orjuela, PP.; García-Díaz, JC.; Pulido-Rojano, A.; Cañón-Zabala, G. (2019). ISO 50001: 2018 and Its Application in a Comprehensive Management System with an Energy-Performance Focus. Energies. 12(24):1-33. https://doi.org/10.3390/en12244700S1331224Strategic Business Plan 2017https://isotc.iso.org/livelink/livelink/fetch/2000/2122/687806/ISO_ TC_301_Energy_management_and_energy_saving.pdf?nodeid=19278553&vernum=-2Directives and Policies Ninth Edition, Part 2. Official Rules to Develop an ISO Standardwww.iso.org/directives-and-policies.htmlStandards by ISO/TC 301https://www.iso.org/committee/6077221.htmlCEM Advancing Clean Energy Together, Ministerial Meetingshttps://www.cleanenergyministerial.org/events-Clean-Energy-Ministerial. CEM 01 to CEM 10Organization for Economic Co-Operation and Development OECDhttps://stats.oecd.org/index.aspx?queryid=70734Strategic Plan 2016–2020. Bruxelles: CEEhttps://trade.ec.europa.eu/doclib/docs/2016/august/tradoc_154919.pdfChaos Reporthttp://www.laboratorioti.com /2016/05/16/informe-del-caos-2015-chaos-report-2015-bien-malfueron-los-proyectos-ano-2015/Oliva, F. L. (2016). A maturity model for enterprise risk management. International Journal of Production Economics, 173, 66-79. doi:10.1016/j.ijpe.2015.12.007Thekdi, S., & Aven, T. (2016). An enhanced data-analytic framework for integrating risk management and performance management. Reliability Engineering & System Safety, 156, 277-287. doi:10.1016/j.ress.2016.07.010Aven, T., & Krohn, B. S. (2014). A new perspective on how to understand, assess and manage risk and the unforeseen. Reliability Engineering & System Safety, 121, 1-10. doi:10.1016/j.ress.2013.07.005Wilson, J. P., & Campbell, L. (2018). ISO 9001:2015: the evolution and convergence of quality management and knowledge management for competitive advantage. Total Quality Management & Business Excellence, 31(7-8), 761-776. doi:10.1080/14783363.2018.1445965Ciravegna Martins da Fonseca, L. M. (2015). ISO 14001:2015: An improved tool for sustainability. Journal of Industrial Engineering and Management, 8(1). doi:10.3926/jiem.1298Cosgrove, J., Littlewood, J., & Wilgeroth, P. (2017). Development of a framework of key performance indicators to identify reductions in energy consumption in a medical devices production facility. International Journal of Ambient Energy, 39(2), 202-210. doi:10.1080/01430750.2017.1278718Castrillón Mendoza, R., Rey Hernández, J., Velasco Gómez, E., San José Alonso, J., & Rey Martínez, F. (2018). Analysis of the Methodology to Obtain Several Key Indicators Performance (KIP), by Energy Retrofitting of the Actual Building to the District Heating Fuelled by Biomass, Focusing on nZEB Goal: Case of Study. Energies, 12(1), 93. doi:10.3390/en12010093Chiu, T.-Y., Lo, S.-L., & Tsai, Y.-Y. (2012). Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems. Energies, 5(12), 5324-5339. doi:10.3390/en5125324Laskurain, I., Ibarloza, A., Larrea, A., & Allur, E. (2017). Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS. Energies, 10(11), 1758. doi:10.3390/en10111758Al-Sakkaf, S., Kassas, M., Khalid, M., & Abido, M. A. (2019). An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch. Energies, 12(8), 1457. doi:10.3390/en12081457Zobel, T., & Malmgren, C. (2016). Evaluating the Management System Approach for Industrial Energy Efficiency Improvements. Energies, 9(10), 774. doi:10.3390/en9100774Laskurain, I., Heras-Saizarbitoria, I., & Casadesús, M. (2015). Fostering renewable energy sources by standards for environmental and energy management. Renewable and Sustainable Energy Reviews, 50, 1148-1156. doi:10.1016/j.rser.2015.05.050Stoeglehner, G., Niemetz, N., & Kettl, K.-H. (2011). Spatial dimensions of sustainable energy systems: new visions for integrated spatial and energy planning. Energy, Sustainability and Society, 1(1). doi:10.1186/2192-0567-1-2Calvillo, C. F., Sánchez-Miralles, A., & Villar, J. (2016). Energy management and planning in smart cities. Renewable and Sustainable Energy Reviews, 55, 273-287. doi:10.1016/j.rser.2015.10.133Blaauwbroek, N., Nguyen, P. H., Konsman, M. J., Shi, H., Kamphuis, R. I. G., & Kling, W. L. (2015). Decentralized Resource Allocation and Load Scheduling for Multicommodity Smart Energy Systems. IEEE Transactions on Sustainable Energy, 6(4), 1506-1514. doi:10.1109/tste.2015.2441107Mao, M., Jin, P., Hatziargyriou, N. D., & Chang, L. (2014). Multiagent-Based Hybrid Energy Management System for Microgrids. IEEE Transactions on Sustainable Energy, 1-1. doi:10.1109/tste.2014.2313882Carli, R., & Dotoli, M. (2019). Decentralized control for residential energy management of a smart users microgrid with renewable energy exchange. IEEE/CAA Journal of Automatica Sinica, 6(3), 641-656. doi:10.1109/jas.2019.1911462The ISO 27k Forumhttps://www.iso27001 security.com/html/iso27000.htmlIntroduction to the Basic Concepts of General Systems Theory. Cinta de Moebiohttp://www.redalyc.org/articulo.oa?id=10100306Von Bertalanffy, L. (1950). The Theory of Open Systems in Physics and Biology. Science, 111(2872), 23-29. doi:10.1126/science.111.2872.23Hernandis Ortuño, B., & Briede Westermeyer, J. C. (2009). AN EDUCATIONAL APPLICATION FOR A PRODUCT DESIGN AND ENGINEERING SYSTEMS USING INTEGRATED CONCEPTUAL MODELS. Ingeniare. Revista chilena de ingeniería, 17(3). doi:10.4067/s0718-33052009000300017Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180. doi:10.1016/j.destud.2008.01.001Conceptual Model and Route to Implement a Comprehensive Management System QHSE3+, in New Trends in Operations Research and Administrative Sciences. An Approach from Latin American Studieshttps://bonga.unisimon.edu.co/handle/20.500.12442/2601Golini, R., Kalchschmidt, M., & Landoni, P. (2015). Adoption of project management practices: The impact on international development projects of non-governmental organizations. International Journal of Project Management, 33(3), 650-663. doi:10.1016/j.ijproman.2014.09.006Marcelino-Sádaba, S., González-Jaen, L. F., & Pérez-Ezcurdia, A. (2015). Using project management as a way to sustainability. From a comprehensive review to a framework definition. Journal of Cleaner Production, 99, 1-16. doi:10.1016/j.jclepro.2015.03.020Archer, N. ., & Ghasemzadeh, F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management, 17(4), 207-216. doi:10.1016/s0263-7863(98)00032-5Velásquez-Restrepo, S. M., Londoño-Gallego, J. A., López-Romero, C., & Vahos, J. D. (2018). Desarrollo de una plataforma web multimedial para la elaboración de proyectos bajo la metodología de marco lógico. Lámpsakos, 1(18), 12. doi:10.21501/21454086.2601Crawford, P., & Bryce, P. (2003). Project monitoring and evaluation: a method for enhancing the efficiency and effectiveness of aid project implementation. International Journal of Project Management, 21(5), 363-373. doi:10.1016/s0263-7863(02)00060-1San Cristóbal, J. R., Carral, L., Diaz, E., Fraguela, J. A., & Iglesias, G. (2018). Complexity and Project Management: A General Overview. Complexity, 2018, 1-10. doi:10.1155/2018/4891286Ramasesh, R. V., & Browning, T. R. (2014). A conceptual framework for tackling knowable unknown unknowns in project management. Journal of Operations Management, 32(4), 190-204. doi:10.1016/j.jom.2014.03.003Pollack, J. (2007). The changing paradigms of project management. International Journal of Project Management, 25(3), 266-274. doi:10.1016/j.ijproman.2006.08.002Lamers, M. (2002). Do you manage a project, or what? A reply to «Do you manage work, deliverables or resources», International Journal of Project Management, April 2000. International Journal of Project Management, 20(4), 325-329. doi:10.1016/s0263-7863(00)00053-3Torabi, S. A., Giahi, R., & Sahebjamnia, N. (2016). An enhanced risk assessment framework for business continuity management systems. Safety Science, 89, 201-218. doi:10.1016/j.ssci.2016.06.015Baccarini, D. (1999). The Logical Framework Method for Defining Project Success. Project Management Journal, 30(4), 25-32. doi:10.1177/875697289903000405Casals, M., Gangolells, M., Forcada, N., Macarulla, M., Giretti, A., & Vaccarini, M. (2016). SEAM4US: An intelligent energy management system for underground stations. Applied Energy, 166, 150-164. doi:10.1016/j.apenergy.2016.01.029Matrawy, K. K., Mahrous, A.-F., & Youssef, M. S. (2015). Energy management and parametric optimization of an integrated PV solar house. Energy Conversion and Management, 96, 377-383. doi:10.1016/j.enconman.2015.02.088Kyriakarakos, G., Dounis, A. I., Arvanitis, K. G., & Papadakis, G. (2012). A fuzzy logic energy management system for polygeneration microgrids. Renewable Energy, 41, 315-327. doi:10.1016/j.renene.2011.11.019Johansson, M. T., & Thollander, P. (2018). A review of barriers to and driving forces for improved energy efficiency in Swedish industry– Recommendations for successful in-house energy management. Renewable and Sustainable Energy Reviews, 82, 618-628. doi:10.1016/j.rser.2017.09.052Jovanović, B., & Filipović, J. (2016). ISO 50001 standard-based energy management maturity model – proposal and validation in industry. Journal of Cleaner Production, 112, 2744-2755. doi:10.1016/j.jclepro.2015.10.023Majernik, M., Bosak, M., Stofova, L., & Szaryszova, P. (2015). INNOVATIVE MODEL OF INTEGRATED ENERGY MANAGEMENT IN COMPANIES. Quality Innovation Prosperity, 19(1). doi:10.12776/qip.v19i1.384Implementation of ISO 50001 in Industry in The Netherlands. ECEE Industry Summer Studywww.eceee.orgDe Groot, H. L. F., Verhoef, E. T., & Nijkamp, P. (2001). Energy saving by firms: decision-making, barriers and policies. Energy Economics, 23(6), 717-740. doi:10.1016/s0140-9883(01)00083-4Development of the EMAS Sectoral Reference Documents on Best Environmental Management Practice. Learning from Frontrunners Promoting Best Practice. Publications Office of the European Unionhttps://publications.jrc.ec.europa.eu/repository/bitstream/JRC84966/lfna26291enn.pd
    corecore